

WGC20630-V1A

Rev. V2

MACOM PURE CARBIDE

Features

- GaN on SiC HEMT Technology
- Pulsed CW Performance: 1995 MHz, 48 V, 10 μs
 Pulse Width, 10% Duty Cycle, Combined Outputs
- Output Power @ P4dB = 630 W
- Efficiency @ P4dB = 74%
- RoHS* Compliant

Applications

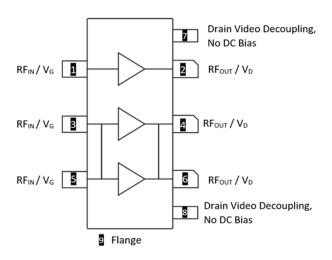
Cellular Power

Description

The WGC20630 is a 630 W (P4dB) GaN on Silicon Carbide HEMT amplifier designed for use in multistandard cellular power amplifier applications. It features optimized operation from 1930 - 2020 MHz and a thermally-enhanced over-molded plastic package.

Typical RF Performance¹ (Tested in Doherty application test circuit)

 \dot{V}_{DD} = 48 V, I_{DQ} = 360 mÅ, P_{OUT} = 49.3 dBm (85 W), T_A = +25°C, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF


Frequency (MHz)	Gain (dB)	Efficiency (%)	OPAR (dB)	ACPR (dBc)
1930	16.1	56.9	8.5	-30.6
1975	15.9	55.9	8.7	-30.9
2020	15.7	54.7	8.9	-32.1

Measurements taken with the device soldered in an application test circuit.

Ordering Information

Part Number	Package
WGC20630-V1A-R0	50 piece reel
WGC20630-V1A-R2	250 piece reel
LTAWGC20630-E4	Sample Board

Functional Schematic

Pin Configuration²

Pin #	Function
1, 3, 5	RF _{IN} / V _G
2, 4, 6	RF _{OUT} / V _D
7, 8	Drain Video Decoupling. No DC Bias
9	Flange

^{2.} Exposed metallization on the back side of the package.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM PURE CARBIDE

WGC20630-V1A

Rev. V2

Single-Carrier WCDMA Specifications³: V_{DD} = 48 V, I_{DQ} = 360 mA, $V_{GS(PEAK)}$ = -5 V, T_{C} = 25°C, 2020 MHz, 3.84 MHz bandwidth, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Symbol	Units	Min.	Тур.	Max.
Gain	Gps	dB	13	14.8	_
Drain Efficiency	Eff	%	49	58.7	_
Adjacent Channel Power Ratio	ACPR	dBc	_	-26.5	-21
Output PAR @ 0.01% CCDF	OPAR	dB	6.9	7.8	_

^{3.} Measurements taken in MACOM Production Test Fixture

DC Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V Main Peak	mA	_	_	6.3 12.5
Gate-Source Leakage Current, High Voltage	V _{GS} = -8 V, V _{DS} = 150 V Main Peak	mA		_	-2.75 -8.25
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DD} = 50 V Main Peak	mA		_	-9.4 -18.6
Gate Threshold Voltage	V_{DS} = 10 V, I_{D} = 36 mA, Main V_{DS} = 10 V, I_{D} = 72 mA, Peak	V	-3.8	-3.0	-2.3

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage	_	V	0	_	50
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 360 mA	V	-3.8	-2.9	-2.3

MACOM PURE CARBIDE.

WGC20630-V1A

Rev. V2

Absolute Maximum Ratings^{4,5,6}

Parameter	Absolute Maximum
Drain Source Voltage	125 V
Gate Source Voltage	-10 V to +2 V
Operating Voltage	55 V
Gate Current Main Peak	36 mA 72 mA
Drain Current Main Peak	12.2 A 24.4 A
Junction Temperature	+225°C
Storage Temperature	-65°C to +150°C

^{4.} Exceeding any one or combination of these limits may cause permanent damage to this device.

MACOM does not recommend sustained operation near these survivability limits.

Thermal Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Thermal Resistance (R _{eJC}) Main Peak	T _C = +85°C 123 W DC 157 W DC	°C/W	_	1.1 0.6	_

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B and CDM Class C3 devices.

Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

WGC20630-V1A Rev. V2

Load Pull Performance: Pulsed CW Signal: 10 µs, 10% Duty Cycle

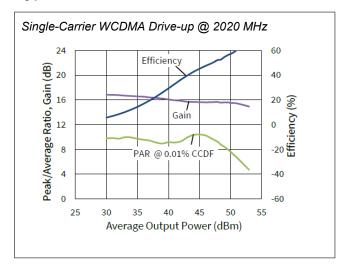
Main Side:

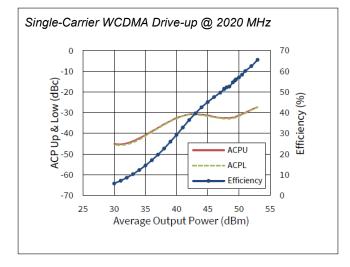
		Maximum Output Power V _{DS} = 48 V, I _{DQ} = 360 mA, T _C = 25°C, P3dB, Class AB					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	Р _{оит} (dВm)	P _{out} (W)	η _D (%)	
1930	6.8 - j13.5	3.3 - j7.0	17.87	55.16	328	69.8	
1990	7.8 - j13.0	2.8 - j7.1	17.87	54.57	286	66.5	
2020	8.9 - j10.1	3.0 - j7.6	17.55	55.01	317	70.7	

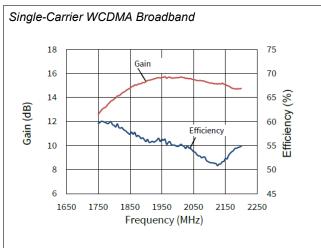
		Maximum Drain Efficiency V _{DS} = 48 V, I _{DQ} = 360 mA, T _C = 25°C, P3dB, Class AB					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	Р _{оит} (dBm)	P _{OUT} (W)	η _D (%)	
1930	6.8 - j13.5	4.6 - j5.4	19.0	54.30	266	77.3	
1990	7.8 - j13.0	5.0 - j3.8	19.7	52.10	161	75.1	
2020	8.9 - j10.1	3.9 - j3.6	19.2	52.90	193	82.5	

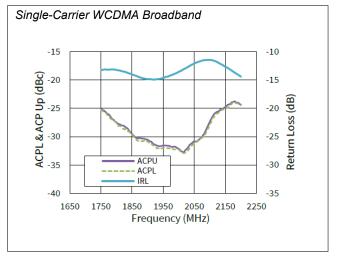
Peak Side:

		Maximum Output Power V _{DS} = 48 V, V _{GS(PEAK)} = -5 V, T _C = 25°C, P3dB, Class C					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D (%)	
1930	6.3 - j3.9	1.5 - j3.9	12.4	57.90	612	66.8	
1990	7.6 - j1.8	1.8 - j4.4	13.0	58.20	656	67.3	
2020	7.4 - j1.0	1.7 - j4.0	13.2	57.70	593	65.8	

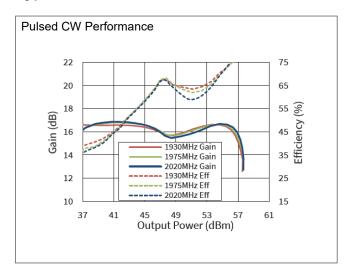

		Maximum Drain Efficiency					
		V _{DS} = 48 V, V _{GS(PEAK)} = -5 V, T _C = 25°C, P3dB, Class C					
Frequency (MHz)	Z_{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D (%)	
1930	6.3 - j3.9	2.5 + j1.3	13.1	54.90	311	80.7	
1990	7.6 - j1.8	2.5 + j2.3	13.8	56.00	401	81.0	
2020	7.4 - j1.0	2.5 + j2.2	14.1	56.10	406	82.7	

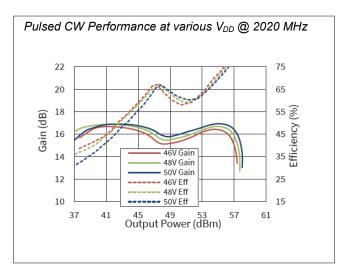


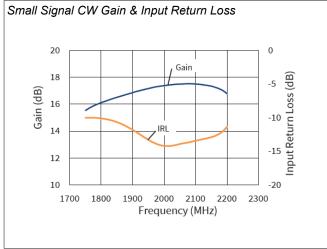

WGC20630-V1A


Rev. V2

Typical Performance Curves: Data taken in evaluation board

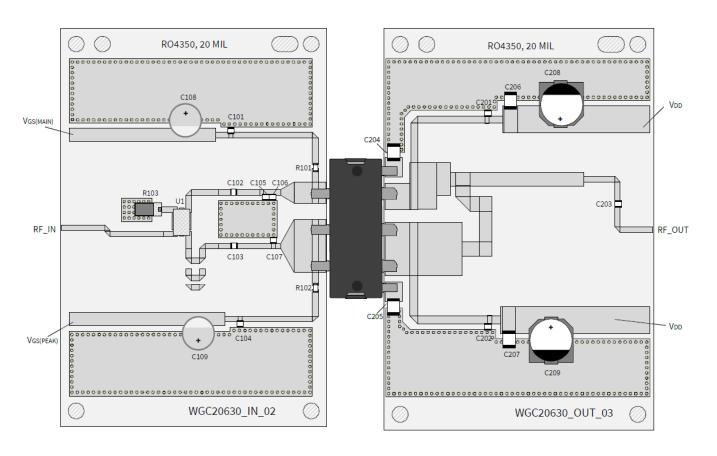





WGC20630-V1A

Rev. V2

Typical Performance Curves: Data taken in evaluation board

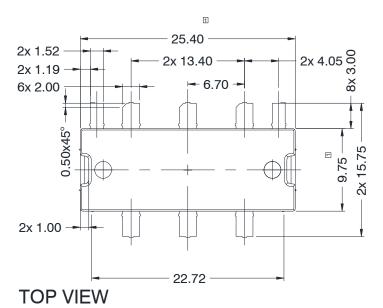


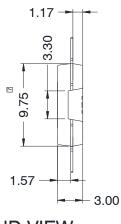
WGC20630-V1A Rev. V2

Evaluation Board: 1930 - 2020 MHz

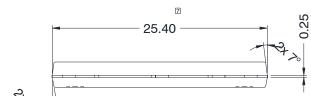
Parts List for Evaluation Board: 1930 - 2020 MHz

Component	Description	Manufacturer	Manufacturer P/N
Input			
C101, C102, C103, C104	Capacitor, 22 pF	ATC	ATC800A220JT250X
C105	Capacitor, 0.7 pF	ATC	ATC800A0R7CT250X
C106	Capacitor, 1.0 pF	ATC	ATC800A1R0CT250X
C107	Capacitor, 2.7 pF	ATC	ATC800A2R7CT250X
C108, C109	Capacitor, 10 µF, 35 V	Panasonic	EEE-1VA100WR
R101, R102	Resistor, 10 Ω	Panasonic	ERJ-8GEYJ100V
R103	Resistor, 50 Ω	TTM Technologies	C16A50Z4
U1	Hybrid Coupler	Anaren	X3C20F1-02S
Output			
C201 - C203	Capacitor, 22 pF	ATC	ATC800A220JT250X
C204 - C207	Capacitor, 4.7 μF, 80 V	Murata	GRM32ER71K475KE14L
C208 - C209	Capacitor, 100 μF, 63 V	Panasonic	EEE-FK1J101P

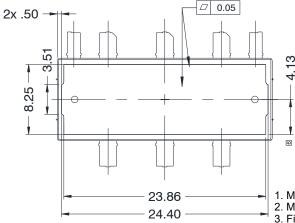



WGC20630-V1A

Rev. V2


MACOM PURE CARBIDE

Lead-Free Outline Drawing PG-HBSOF-8-1



END VIEW

SIDE VIEW

- 1. Mold/dam bar/metal protrusion of 0.30 mm max per side not included.
- 2. Metal protrusions connected to source and shall not exceed 0.10 mm max.
- 3. Fillets and radii: Unless otherwise noted all radii are 0.3 mm max.
- 4. Molded package Ra 1.2-1.6 μm.
- 5. All metal surfaces tin pre-plated, except area of cut.
- 6. Exposed metal surface tin plated, may not be covered by mold compound.
- 7. Does not include mold/dam bar/metal protrusion.
- 8. Interpret dimensions and tolerances per ISO 8015.
- 9. Dimensions are in mm.

Visit www.macom.com for additional data sheets and product information.

Y

10. All tolerances are ± 0.1 mm unless specified otherwise.

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

https://www.macom.com/support

BOTTOM VIEW

MACOM PURE CARBIDE...

WGC20630-V1A

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.