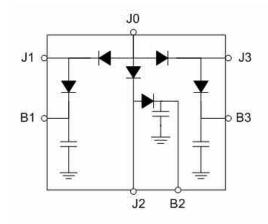


Rev. V3

Features

- Wide Frequency Range: 50 MHz to 4 GHz, in 2 bands
- Surface Mount SP3T Switch in Compact Outline: 8 mm L x 5 mm W x 2.5 mm H
- Higher Average Power Handling than Plastic
 Packaged
- MMIC Switches: 158 W CW
- High RF Peak Power: 500 W
- Low Insertion Loss: 0.45 dB
- High IIP3: 65 dBm
- Operates From Positive Voltage Only: 5 V & 28 V to 125 V
- RoHS* Compliant


Description

The MSW3100-310 (50 MHz - 1 GHz) and MSW3101-310 (400 MHz - 4 GHz) series of surface mount silicon PIN diode SP3T switches can be used for high power transmit/receive (TR) symmetrical switching or active receiver protection. These switches are manufactured using a proven hybrid manufacturing process incorporating high voltage PIN diodes and passive devices integrated on a ceramic substrate. These low profile, compact, surface mount components offer superior small and large signal performance compared to that of MMIC devices in QFN packages. The SP3T switches are designed in a symmetrical topology to enable switched RF port to be used as the high-input-power -handling port, to minimize insertion loss and to maximize isolation performance. The very low thermal resistance (<25°C/W) of the PIN diodes in these devices enables them to reliably handle RF incident power levels of 50 dBm CW and RF peak incident power levels of 57 dBm in cold switching applications. The thick I lavers of the PIN diodes (>100 µm), coupled with their long minority carrier lifetime (>2 µs), produces input third order intercept point (IIP3) greater than 65 dBm.

These MSW310x-310 Series SP3T switches are designed to be used in high average and peak power switch applications, operating from 50 MHz to 4 GHz in two bands, which utilize high volume, surface mount, solder re-flow manufacturing. These products are durable and capable of reliably operating in military, commercial, and industrial environments.

Functional Schematic

Ordering Information

Part Number	Package
MSW3100-310-T	tube
MSW3100-310-R	250 or 500 piece reel
MSW3100-310-W	Waffle pack
MSW3101-310-T	tube
MSW3101-310-R	250 or 500 piece reel
MSW3101-310-W	Waffle pack
MSW3100-310-E	RF evaluation board
MSW3101-310-E	RF evaluation board

1

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Rev. V3

MSW3100-310 Electrical Specifications: $T_A = +25^{\circ}C$, $P_{IN} = 0$ dBm, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Frequency	—	MHz	50	—	1000
Insertion Loss	Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 Bias State 2: port J0 to J3	dB	_	0.4	0.6
Return Loss	Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 Bias State 2: port J0 to J3		18	20	—
Isolation	Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 Bias State 2: port J0 to J3	dB	50	53	—
CW Incident Power ¹	Source & Load VSWR = 1.5:1	dBm		—	50
Peak Incident Power ¹	Source & Load VSWR = 1.5:1 Pulse Width = 10 μs, Duty Cycle = 1%	dBm	_	_	57
Switching Time ²	10% -90% RF Voltage, TTL rep rate = 100 kHz	μs	_	2	3
Input IP3	F1 = 500 MHz, F2 = 510 MHz P1 = P2 = 10 dBm Measure on path biased to low loss state	dBm	60	65	_

MSW3101-310 Electrical Specifications: $T_A = +25^{\circ}C$, $P_{IN} = 0$ dBm, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Frequency	—	MHz	400	—	4000
Insertion Loss	Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 Bias State 2: port J0 to J3		—	0.6	0.8
Return Loss	Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 Bias State 2: port J0 to J3		14	15	—
Isolation	Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 Bias State 2: port J0 to J3	dB	32	34	_
CW Incident Power ¹	Source & Load VSWR = 1.5:1	dBm	—	—	50
Peak Incident Power ¹	Source & Load VSWR = 1.5:1 Pulse Width = 10 μs, Duty Cycle = 1%	dBm	_	_	57
Switching Time ²	10% -90% RF Voltage, TTL rep rate = 100 kHz	μs		2	3
Input IP3	F1 = 500 MHz, F2 = 510 MHz P1 = P2 = 10 dBm Measure on path biased to low loss state	dBm	60	65	_

1. PIN diode DC reverse voltage to maintain high resistance in the OFF PIN diode is determined by RF frequency, incident power, and VSWR as well as by the characteristics of the diode. The minimum reverse bias voltage values are provided in this datasheet. The input signal level applied for small signal testing is approximately 0 dBm.

 Switching Speed (50 % TTL – 10/90 % RF Voltage) is a function of the PIN diode driver performance as well as the characteristics of the diode. An RC "current spiking network" is used on the driver output to provide a transient current to rapidly remove stored charge from the PIN diode. Typical component values are: R = 50 to 220 Ω and C = 470 to 1,000 pF.

²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

Truth Table

Port J0 - J1	Port J0 - J2	Port J0 - J3	Bias: J1	Bias: J2	Bias: J3	Bias: B1	Bias: B2	Bias: B3	Bias: J0
Low Loss	Isolation	Isolation	0 V, -100 mA	+27 V, +25 mA	+27 V, +25 mA	+27 V, 0 mA	0 V, -25 mA	0 V, -25 mA	+5 V, +100 mA
Isolation	Low Loss	Isolation	+27 V, +25 mA	0 V, -100 mA	+27 V, +25 mA	0 V, -25 mA	+27 V, 0 mA	0 V, -25 mA	+5 V, +100 mA
Isolation	Isolation	Low Loss	+27 V, +25 mA	+27 V, +25 mA	0 V, -100 mA	0 V, -25 mA	0 V, -25 mA	+27 V, 0 mA	+5 V, +100 mA

RF Bias Network Component Values

Part #	Frequency (MHz)	Inductors	DC Blocking Capacitors	RF Bypass Capacitors
MSW3100-310	50 - 1000	4.7 µH	0.1 µF	0.1 µF
MSW3101-310	400 - 4000	82 nH	22 pF	270 pF

Minimum Reverse Bias Voltage³: $P_{INC} = 125$ W CW, $Z_0 = 50 \Omega$ with 1.5:1 VSWR

Part #	20 MHz	100 MHz	200 MHz	400 MHz	1 GHz	4 GHz
MSW3100-310	125 V	25 V	85 V	55 V	28 V	N/A
MSW3101-310	N/A	N/A	125 V	85 V	55 V	28 V

3. N/A denotes the switch is not recommended for that frequency band.

The minimum reverse bias voltage required to maintain a PIN diode out of conduction in the presence of a large RF signal is given by:

$$|V_{DC}| = \frac{|V_{RF}|}{\sqrt{1 + \left[\left(\frac{0.0142 \times f_{MHz} \times W_{mils}^2}{V_{RF} \times \sqrt{D}}\right) \times \left(1 + \sqrt{1 + \left(\frac{0.056 \times V_{RF} \times \sqrt{D}}{W_{mils}}\right)^2}\right)\right]^2}}$$

Where:

R. Caverly and G. Hiller, —Establishing the Minimum Reverse Bias for a PIN Diode in a High Power Switch, IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990

3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

Absolute Maximum Ratings

Parameter	Conditions	Absolute Maximum
Forward Current	J1, J2, J3 port B1, B2, B3 port	250 mA 150 mA
Reverse Voltage	J1, J2, J3 port B1, B2, B3 port	200 V
Forward Diode Voltage	I _F = 250 mA	1.2 V
CW Incident Power Handling ⁴	J0, J1, J2, J3 port Source & Load VSWR = 1.5:1, T_c = 85°C, cold switching	50 dBm
Peak Incident Power Handling ⁴	J0, J1, J2, J3 port Source & Load VSWR = 1.5:1, T_c = 85°C, cold switching, Pulse Width = 10 µs, Duty Cycle = 1%	57 dBm
Total Dissipated RF & DC Power ⁴	T _c = 85°C, cold switching	5 W
Junction Temperature	—	+175°C
Operating Temperature	—	-65°C to +125°C
Storage Temperature	—	-65°C to +150°C
Assembly Temperature	t = 10 s	+260°C

4. Backside RF and DC grounding area of device must be completely solder attached to the RF circuit board vias for proper electrical and thermal circuit grounding.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MSW310x-310 Rev. V3

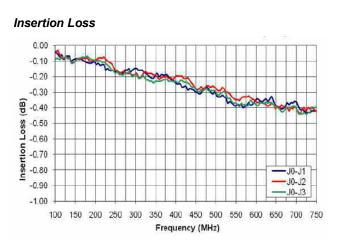
Nominal Operating Conditions

Parameter	Conditions	Value
Forward Current	J1, J2, J3 port B1, B2, B3 port	200 mA 100 mA
Reverse Voltage	J1, J2, J3 port B1, B2, B3 port	125 V
CW Incident Power Handling	J0, J1, J2, J3 port Source & Load VSWR = 1.5:1, T_c = 85°C, cold switching	48 dBm
Peak Incident Power Handling	J0, J1, J2, J3 port Source & Load VSWR = 1.5:1, T_c = 85°C, cold switching, Pulse Width = 10 µs, Duty Cycle = 1%	55 dBm
Junction Temperature	_	+175°C
Operating Temperature	_	-40°C to +85°C
Storage Temperature	_	-65°C to +150°C

Handling Procedures

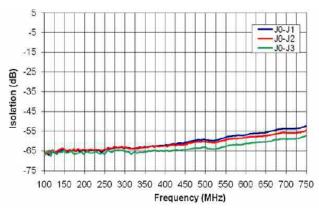
Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1C (HBM) devices. The moisture sensitivity level (MSL) rating for this part is MSL 1.

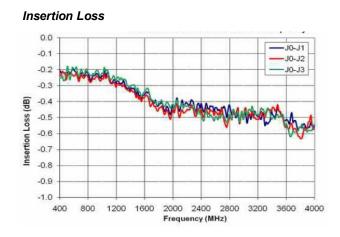
Environmental Capabilities

The MSW204x-204 diode is capable of meeting the environmental requirements of MIL-STD-202 and MIL-STD-750.

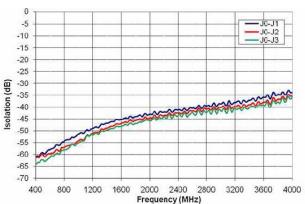

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

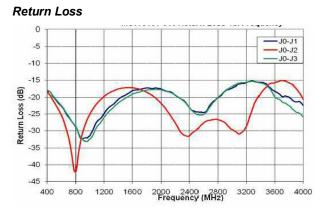
MSW3100-310

Isolation



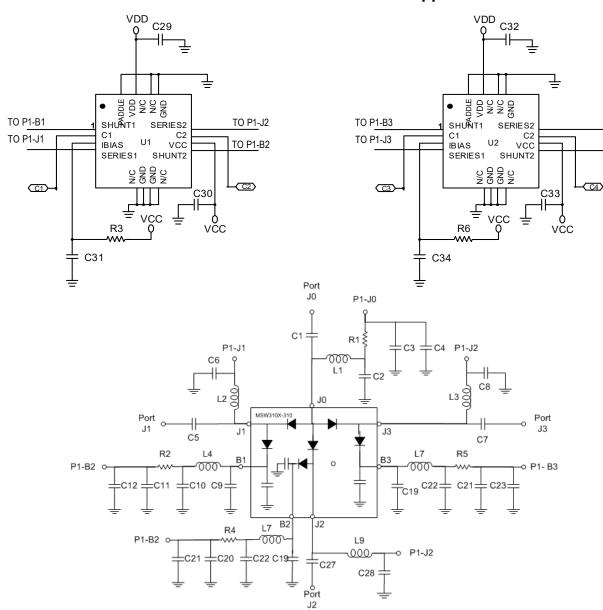
Return Loss 0.0 JO-J1 -5.0 .10-.12 JO-J3 -10.0 -15.0 Return Loss (dB) -20.0 -25.0 -30.0 -35.0 -40.0 -45.0 100 150 200 250 300 350 400 450 500 550 600 650 700 750 Frequency (MHz)




MSW310x-310 Rev. V3

MSW3101-310

Isolation



6

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MSW310x-310 Rev. V3

SP3T Switch Evaluation Board with MADR-010574 Driver Application Schematic⁵

Parts List

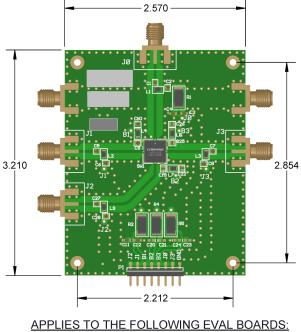
Part	Value	Part	Value	
C29, C32	0.01 µF	R2, R4, R5 ⁶	12 KΩ	
C30, C31, C33, C34	0.1 µF	R3, R6	499 ΚΩ	

5. See pg. 8 for R1, L1 - L9 and C1 - C28 values. P1-J0 set to $V_{\text{CC}}.$

6. Resistor value calculated to provide 10 mA of shunt diode bias current given V_{CC} = 5 V and V_{DD} = 120 V.

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V3

Truth & Bias Table: SP3T Switch Operation with MADR-010574 PIN Diode Driver

CTRL 1	CTRL 2	CTRL 3	Path J0 - J1	Path J0 - J2	Path J0 - J3	Bias: J1	Bias: J2	Bias: J3	Bias: B1	Bias: B2	Bias: B3	Bias: J0
5 V	5 V	5 V	High Isolation	High Isolation	High Isolation	+120 V, +10 mA	+120 V, +10 mA	+120 V, +10 mA	0 V, -10 mA	0 V, -10 mA	0 V, -10 mA	+5 V, 0 mA
0 V	5 V	5 V	Low Loss	High Isolation	High Isolation	0 V, -100 mA	+120 V, +10 mA	+120 V, +10 mA	+120 V, 0 mA	0 V, -10 mA	0 V, -10 mA	+5 V, +100 mA
5 V	0 V	5 V	High Isolation	Low Loss	High Isolation	+120 V, +10 mA	0 V, -100 mA	+120 V, +10 mA	0 V, -10 mA	+120 V, 0 mA	0 V, -10 mA	+5 V, +100 mA
5 V	5 V	0 V	High Isolation	High Isolation	Low Loss	+120 V, +10 mA	+120 V, +10 mA	0 V, -100 mA	0 V, -10 mA	0 V, -10 mA	+120 V, 0 mA	+5 V, +100 mA

SP3T Switch Evaluation Board Layout

APPLIES TO THE FOLLOWING EVAL BOARDS: CS310 - BAND 1 / BAND 2 / BAND 3

It is important to note that the switch module evaluation board, as supplied from the factory, is not capable of handling RF input signals larger than 45 dBm. If performance of the switch under larger input signals is to be evaluated, an adequate heat sink must be properly attached to the evaluation board, and several of the passive components on the board must be changed in order to safely handle the dissipated power as well as the high bias voltage necessary for proper performance. Contact the factory for recommended components and heat sink.

Evaluation Board Parts List

MSW3100-310 Band 1						
Part	Value	Case Style				
C1, C2, C5 - C10, C14, C15, C16, C19, C22, C25 - C28	0.1 µF	0603				
⁷ C3, C4, C11, C12, C17, C18, C20, C21, C23, C24	0.1 µF	0603				
L1 - L9	4.7 µH	0603				
R1	39 Ω	2512				

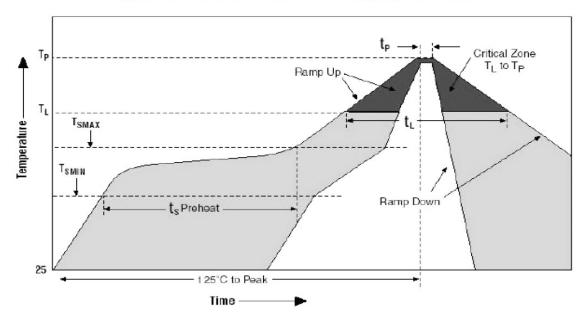
MSW3101-310 Band 2						
Part	Value	Case Style				
C1, C5, C7, C9, C13, C15, C19, C25, C27	22 pF	0603				
C2, C6, C8, C10, C14, C16, C22, C26, C28	270 pF	0603				
C3, C4, C11, C12, C17, C18, C20, C21, C23, C24	1000 pF	0603				
L1 - L9	82 nH	0603				
R1	39 Ω	2512				

7. Second bypass capacitor is optional.

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support


Assembly Instructions

SP3T PIN Diodes may be placed onto circuit boards with pick and place manufacturing equipment from tape and reel. The devices are attached to the circuit using conventional solder re-flow or wave soldering procedures with RoHS type or Sn 60 / Pb 40 type solders.

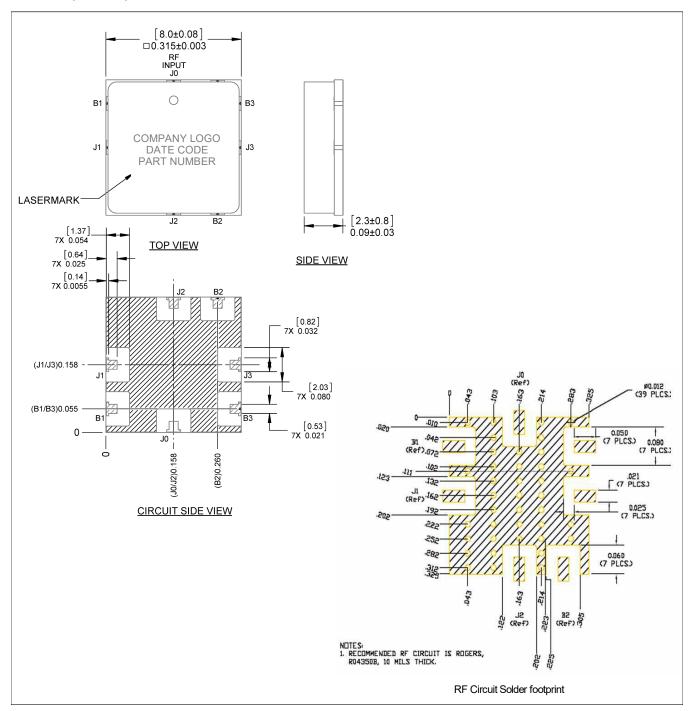
Profile Feature	SnPb Solder Assembly	Pb-Free Solder Assembly
Average Ramp-Up Rate $(T_{L} \text{ to } T_{P})$	3°C /second maximum	3°C /second maximum
Preheat:		
- Temperature Min (T_{SMIN})	100°C	150°C
- Temperature Max (T _{smax})	150°C	200°C
- Time (min to max)(t _s)	60-120 s	60-180 s
T _{SMAX} to T _L - Ramp-Up Rate		3°C/s maximum
Time Maintained Above: - Temperature (۲٫) - Time (է٫)	183℃ 60-150 s	217°C 60-150 s
Peak temperature (T _P)	<mark>225</mark> +0/-5°C	260 +0/-5°C
Time Within 5°C of Actual Peak Temperature (t _p)	10 – 30 s	20 – 40 s
Ramp-Down Rate	6°C /s maximum	6°C /s maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum

Table 1. Time-Temperature Profile for Sn60/Pb40 or RoHS Type Solders

Figure 1. Solder Re-Flow Time-Temperature Profile

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

⁹


SP3T PIN Diode Switch

MACOM

MSW310x-310

Rev. V3

Outline (CS310)^{8,9}

8. Hatched metal area on circuit side of device is RF, DC and thermal grounded.

9. Vias should be solid copper fill and gold plated for optimum heat transfer from backside of switch module through Circuit Vias to metal thermal ground.

¹⁰

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MSW310x-310 Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹¹

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.