Surface Mount Limiter PIN Diode

Features

- Low Junction Capacitance for Low Insertion Loss and High Isolation: $\mathrm{C}_{\mathrm{T}} 6<0.3 \mathrm{pF}$
- Low Series Resistance for High Isolation: $\mathrm{R}_{\mathrm{S}}<1 \Omega$
- Nominal I Layer Width: W = $10 \mu \mathrm{~m}$
- Compact Surface Mount Plastic Package
- RoHS* Compliant

Description

The MLP7120-2012 limiter PIN diode is a low series resistance The MLP7120-2012 limiter PIN diode is a low series resistance, low capacitance limiter PIN diode packaged in a surface mount, low-parasitic plastic package. It is manufactured using a proprietary diode process for excellent performance and high reliability.

The $10 \mu \mathrm{~m}$ nominal I layer width of this diode produces a threshold level of 20 dBm nominal, for demanding receiver protection applications. The low series resistance ($<1 \Omega$), and low total capacitance ($<0.3 \mathrm{pF}$) of MLP7120-2012 produce excellent isolation and insertion loss in shunt, receiver protection applications.

The MLP7120-2012 limiter PIN diode is designed to be used in receiver protection applications.

Ordering Information

Part Number	Package
MLP7120-2012-R	3000 piece reel
MLP7120-2012-B	100 per bag bulk
MLP7120-2012-W	400 piece waffle pack

2012

Pin out / Schematic

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0 devices.

Moisture Sensitivity

These electronic devices are rated MSL 1.

Environmental Capabilities

Capable of meeting the environmental requirements of MIL-STD-750 and MIL-STD-883.

[^0]
Surface Mount Limiter PIN Diode

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Breakdown Voltage $\left(\mathrm{V}_{\mathrm{B}}\right)$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	V	120	-	180
Forward Voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	V	-	0.95	1.2
Total Capacitance ${ }^{1}\left(\mathrm{C}_{\mathrm{T}}\right)$	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}, 1 \mathrm{MHz}$	pF	-	-	0.3
Series Resistance ${ }^{2}\left(\mathrm{R}_{\mathrm{S}}\right)$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, 1 \mathrm{GHz}$ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, 1 \mathrm{GHz}$	Ω	-	3.5	-
Recovery Time $\left(\mathrm{T}_{\mathrm{R}}\right)$	End of the RF input to 1 dB excess insertion loss	ns	-	50	-
Minority Carrier Lifetime $\left(\mathrm{T}_{\mathrm{L}}\right)$	50% control to 90% output voltage, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{R}}=6 \mathrm{~mA}, 1 \mathrm{KHz}$	ns	-	50	-
Thermal Resistance $\left(\theta_{\mathrm{Jc}}\right)$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-	-	45
I layer Thickness (W)	-	$\mu \mathrm{m}$	-	10	-

1. Total capacitance $\left(\mathrm{C}_{\mathrm{T}}\right)$ is the sum of the diode junction capacitance $\left(\mathrm{C}_{\mathrm{J}}\right)$ and the package capacitance $\left(\mathrm{C}_{\text {РКG }}\right)$.
2. Series resistance $\left(\mathrm{R}_{\mathrm{S}}\right)$ is measured on the HP 4291 Impedance Analyzer.

Absolute Maximum Ratings

Parameter	Test Conditions	Absolute Maximum
Forward DC Current	-	150 mA
Reverse DC Voltage	-	180 V
Forward DC Voltage	Pulse Width $=1 \mu \mathrm{~s}$, Duty Cycle $=1 \%$	1.3 V
Peak RF Input Power	-	60 dBm
CW Input Power	-	37 dBm
Junction Temperature	-	$+175^{\circ} \mathrm{C}$
Operating Temperature	-	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{t}=10 \mathrm{~s}$	$-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Assembly Temperature	$+260^{\circ} \mathrm{C}$	

Surface Mount Limiter PIN Diode

Assembly Instructions

Diodes may be placed onto circuit boards with pick and place manufacturing equipment from tape-reel. The devices are attached to the circuit using conventional solder re-flow or wave soldering procedures with RoHS type or Sn 60 / Pb 40 type solders.

Table 1. Time-Temperature Profile for Sn60/Pb40 or RoHS Type Solders

Profile Feature	SnPb Solder Assembly	Pb-Free Solder Assembly
Average Ramp-Up Rate (L_{L} to T_{P})	$3^{\circ} \mathrm{C} /$ second maximum	$3^{\circ} \mathrm{C} /$ second maximum
Preheat: -Temperature $\operatorname{Min}\left(T_{\text {SMIN }}\right)$ -Temperature $\operatorname{Max}\left(T_{\text {SMAX }}\right)$ -Time $(\min$ to $\max)\left(\mathrm{t}_{\mathrm{s}}\right)$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-180 \mathrm{~s} \\ \hline \end{gathered}$
$\mathrm{T}_{\text {SMAX }}$ to T_{L} - Ramp-Up Rate		$3^{\circ} \mathrm{C} / \mathrm{s}$ maximum
Time Maintained Above: -Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 183^{\circ} \mathrm{C} \\ 60-150 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \mathrm{~s} \\ \hline \end{gathered}$
Peak temperature (T_{P})	$225+0 /-5^{\circ} \mathrm{C}$	$260+0 /-5^{\circ} \mathrm{C}$
Time Within $5^{\circ} \mathrm{C}$ of Actual Peak Temperature (t_{p})	10-30 s	20-40 s
Ramp-Down Rate	$6^{\circ} \mathrm{C} / \mathrm{s}$ maximum	$6^{\circ} \mathrm{C} / \mathrm{s}$ maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	6 minutes maximum	8 minutes maximum

Figure 1. Solder Re-Flow Time-Temperature Profile

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Surface Mount Limiter PIN Diode

Package Outline

Surface Mount Limiter PIN Diode

Printed Circuit Board Layout (Soldering Footprint) ${ }^{3,4,5,6,7}$

3. Unless otherwise specified: Tolerance $\pm 0.10 \mathrm{~mm}$.
4. If possible, use copper filled vias underneath pin 3 for better thermals; otherwise, use vias that are plated through, filled and plated over.
5. Solder mask should provide a $60 \mu \mathrm{~m}$ clearance between copper pad and soldermask. Rounded package pads should have matching rounded solder mask openings.
6. Use circles or squares for thermal land stencil such that there is only 50% to 80% solder paste coverage.
7. 20 mils Rogers RO4350B with 1 oz . copper clad and 10 mil diameter plated thru vias on 20 mil centers underneath package.

Surface Mount Limiter PIN Diode

MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

