SPDT Reflective Switch 10 MHz - 3 GHz

MASW-011242

Rev. V1

Features

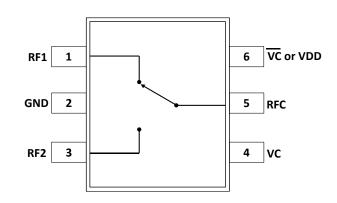
Insertion Loss:

0.16 dB @ 1 GHz 0.23 dB @ 2 GHz 0.30 dB @ 3 GHz

- Isolation: 25 dB up to 2 GHz
- Input P0.1dB: 33.8 @ 1 GHz
- Input IP3: 57 dBm
- Power Supply Voltage: 1.8 V min.
- Quiescent Current: 8 μA
- · Single-ended or Differential Control Inputs
- SC-70 (SOT-363) Package
- RoHS* Compliant

Applications

ISM/MM


Description

The MASW-011242 is a RF SOI single pole, double throw (SPDT) switch in a low cost, lead-free SC-70 (SOT-363) surface mount plastic package. This Switch is ideally suited for applications where very small size and low cost are required.

Typical applications are dual band systems which require switching between small signal components such as filter banks, single-band LNAs, converters, etc. This part can be used for low power, low loss requirements in all systems operating up to 3 GHz, including PCS, GSM, DCS, Bluetooth, and other receive chain applications.

The MASW-011242 is fabricated using a Silicon-on-Insulator process. The process features full passivation for performance and reliability.

Block Diagram

Pin Configuration¹

Pin #	Pin Name	Description	
1	RF1	RF Input/Output 1	
2	GND	Ground	
3	RF2	RF Input/Output 2	
4	VC	Control	
5	RFC	Common RF Input/Output	
6	∇C or VDD²	Supply Voltage or Complementary Control Input	

- 1. RF ports are dc-coupled to GND.
- The functionality of this pin is bias supply VDD in single-ended control mode, and complementary control input to VC in differential control mode.

Ordering Information^{3,4}

Part Number	Package
MASW-011242-TR3000	3000 Piece reel
MASW-011242-SMB	Sample Board

- 3. Reference Application Note M513 for reel size information.
- 4. All sample boards include 3 loose parts.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

SPDT Reflective Switch 10 MHz - 3 GHz

MASW-011242

Rev. V1

Electrical Specifications: V_{DD} = +3 V, V_{C} = 0 V or +3 V, T_{B} = +25°C, Z_{0} = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	1 GHz 2 GHz 3 GHz	dB	_	0.16 0.21 0.30	0.9 1.5 2.0
Isolation, RF1 to RF2	1 GHz 2 GHz 3 GHz	dB	_	36 27 20	_
Isolation, RFC to RF1/RF2	1 GHz 2 GHz 3 GHz	dB	30 20 15	33 25 19	_
RFC Return Loss	1 GHz 2 GHz 3 GHz	dB	_	32 26 24	_
RF1 / RF2 Return Loss	1 GHz 2 GHz 3 GHz	dB	_	29 23 21	_
Input IP3	2.5 GHz 20 dBm per tone, 5 MHz tone spacing	dBm	_	57	_
Input P0.1dB	1.0 GHz, VDD = +2.3 V to +3.3 V 1.0 GHz, VDD = +1.8 V to +2.3 V 2.5 GHz, VDD = +2.3 V to +3.3 V 2.5 GHz, VDD = +1.8 V to +2.3 V	dBm	_	33.8 32.5 33.8 32.5	_
T _{ON} /T _{OFF}	50% control to 10% and 90% RF	μs	_	0.7	_
Video Feedthrough	VC is switched from low to high or high to low in a 50 Ω test set-up, measured with 1 ns risetime pulses and 500 MHz bandwidth	mV_{pp}	_	7	_
Switching Rate	_	kHz	_	_	25
Voltage Supply, VDD	_	V	1.8	3.0	3.3
Logic Voltage, Input Low (V _{IL})	_	V	0.0	_	0.3xVDD
Logic Voltage, Input High (V _{IH})	_	V	0.7xVDD	_	VDD
VDD Quiescent Current	_	μΑ	_	8	_
Control Leakage Current	_	nA	_	10	_

Rev. V1

Truth Table, Single-ended Control Mode

Control Input	Condition of Switch		
VC	RFC - RF1 Path RFC - RF2 P		
V _{IH}	On	Off	
V _{IL}	Off	On	

Truth Table, Differential Control Mode

Control Inputs		Condition of Switch		
VC	VC	RFC - RF1 Path	RFC - RF2 Path	
V _{IH}	V _{IL}	On	Off	
V _{IL}	V _{IH}	Off	On	

Power Supply

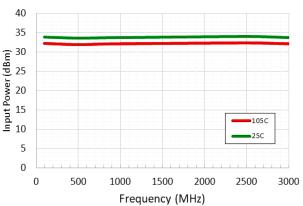
For single-ended control mode, bypass capacitors should be placed at the VDD supply pin to minimize noise and fast transients. Supply voltage for initial power on should have a slew rate smaller than 1 V / 20 μ s. With the recommended bypassing capacitor circuit, the slew rate should meet this requirement. In addition, the control pin VC should remain at 0 V and no RF power should be applied while the supply voltage ramps.

For differential control mode, some bypass capacitors such as C1 and C4 are still recommended. Supply voltage of the control pin for initial power on should have a slew rate smaller than 1 V / 20 μ s while the other control pin should remain at 0 V and no RF power should be applied while the supply voltage ramps.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C and CDM Class C3 devices.

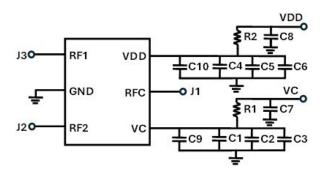
Maximum Operating Ratings

Parameter	Absolute Maximum		
RF Input Power	See max. power handling curve		
VDD	-0.3 to +3.45 V		
VC	-0.3 to VDD		
Operating Temperature	-40 to +105°C		

Maximum Power Handling

Estimated Power Derating based on VDD=3V, 25C and 105C P0.1dB and IL

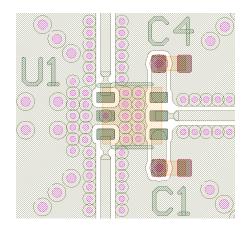
Absolute Maximum Ratings^{5,6,7}


Parameter	Absolute Maximum		
RF input Power	34.5 dBm		
VDD	-0.3 to +3.6 V		
VC	-0.3 to +3.45V		
Junction Temperature	-55 to +135°C		
Storage Temperature	-65 to +150°C		

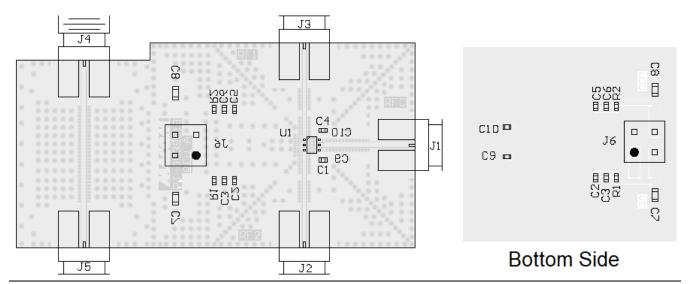
- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 7. Based on testing with input power applied for 30 seconds.

Rev. V1

Application Schematic



Part	Value	Case Style
C1, C4	Capacitor, 100 pF, 50 V	0402
C2, C3, C6, C7, C9, C10	D0 Not Populate	_
C5	Capacitor, 10 nF, 25 V	0402
C6	Capacitor, 10 μF, 25 V	0603
R1	Resistor, 47 Ω	0402
R2	Resistor, 0 Ω	0402
J1 - J3	Southwest 1492-04A-6	End Launch
J6	DC Connector	_
U1	MASW-011242	SC70 6L

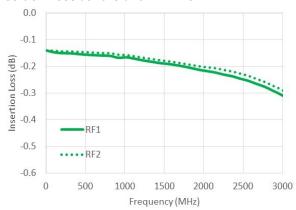

Evaluation Board Material

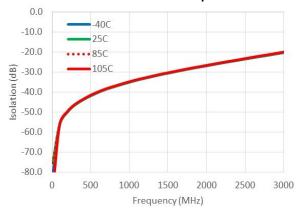
MASW-011242-SMB is a 4-layer printed circuit board (PCB) with 8 mil Rogers RO4003 dielectric material and 1 oz. copper for the top layer. The remaining inter-level dielectric material is FR4 along with 0.5 oz. copper for the inter-level conductor layers. The bottom conductor layer is 1oz copper. The 50 Ω RF transmission lines are CPWG of 14 mil width with 6.5 mil gap.

The package ground pin is internally connected to ground die attach paddle. Solder this ground pin to a PCB pad that uses multiple ground vias as close to the pin as possible to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

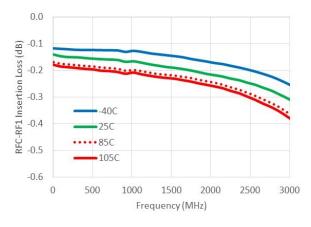
Evaluation Board Layout

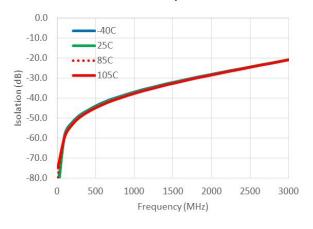
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

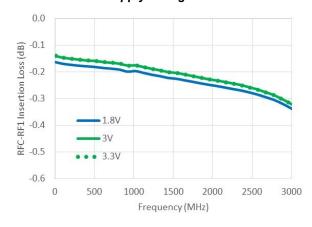

Visit www.macom.com for additional data sheets and product information.


Rev. V1

Typical Performance Curves


Insertion Loss at 25°C and VDD = 3 V

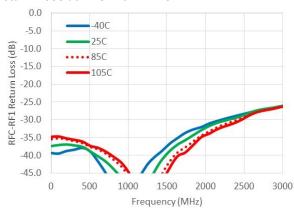

RFC to RF1 / RF2 Isolation over Temperature

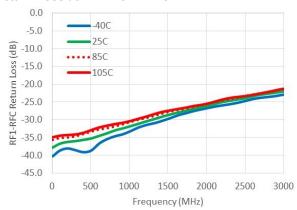

Insertion Loss vs Temperature

RF1 to RF2 Isolation over Temperature

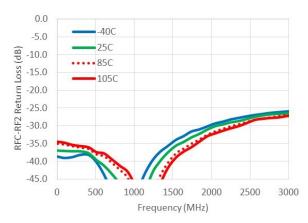
Insertion Loss vs Supply Voltage

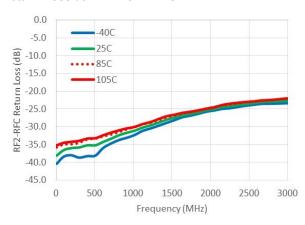
Evaluation Board Thru Line Insertion Loss

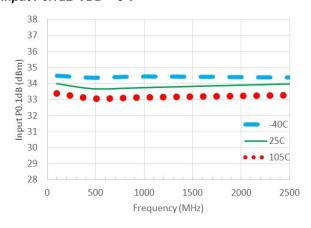


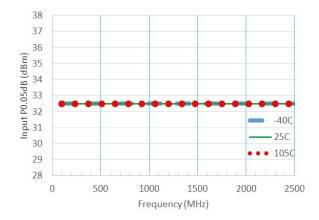

Rev. V1

Typical Performance Curves

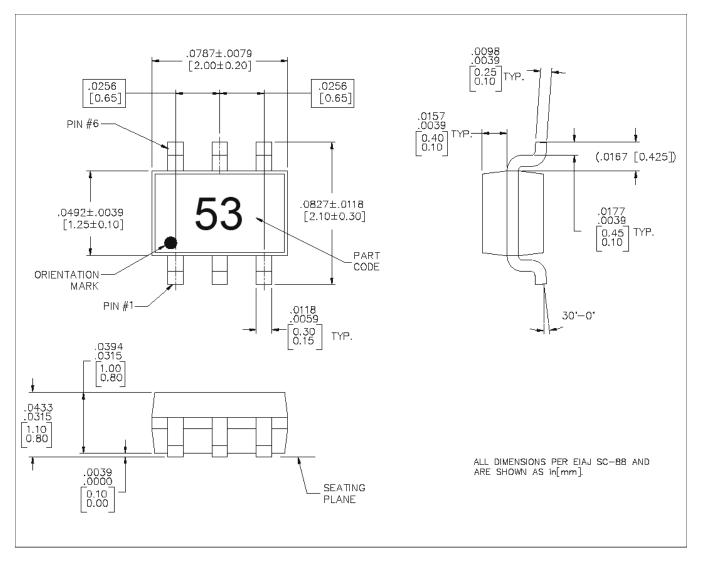

Return Loss at RFC with RF1 ON


Return Loss at RF1 with RF1 ON


Return Loss at RFC with RF2 ON


Return Loss at RF2 with RF2 ON

Input P0.1dB VDD = 3 V


Input P0.05dB VDD = 1.8 V

Rev. V1

Lead-Free SC-70 (SOT-363), 6 Lead Package

SPDT Reflective Switch 10 MHz - 3 GHz

MASW-011242

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.