Features

- 50Ω Impedance
- Input Terminated
- Positive Voltage Control
- High Isolation: 50 dB at 2500 MHz
- 0.5 micron GaAs pHEMT Process
- Lead-Free 3 mm 16-Lead PQFN Package
- 100\% Matte Tin Plating over Copper
- RoHS* Compliant

Applications

- Multi Market / MMIC
- Metro Long Haul

Description

The MASW-011207 is a GaAs pHEMT MMIC single pole double throw (SPDT) switch in a lead-free 3 mm 16-lead PQFN package. The MASW-011207 is ideally suited for applications where low control voltage, high isolation, small size and low cost are required. This part can be used in all 50Ω systems operating up to 3 GHz .

The MASW-011207 is fabricated using a 0.5 micron gate length GaAs pHEMT process. The process features full passivation for performance and reliability.

Ordering Information ${ }^{1,2}$

Part Number	Package
MASW-011207-TR1000	1000 piece reel
MASW-011207-TR3000	3000 piece reel
MASW-011207-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration ${ }^{3}$

Pin \#	Pin Name	Description
$1,2,4,5,6,9$, $12,15,16$	N/C	No Connection
3	RFC	RF Common Port
7	RF2	RF Port 2
8	GT2	RF Ground
10	V2	Vcontrol 2
11	V1	Vcontrol 1
13	GT1	RF Ground
14	RF1	RF Port 1

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.
[^0]Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega^{4}, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V} / 2.9 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=5 \mathrm{dBm}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	$\begin{aligned} & 216 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 810 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \\ & 2200 \mathrm{MHz} \\ & 2500 \mathrm{MHz} \\ & 3000 \mathrm{MHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.64 \\ & 0.65 \\ & 0.66 \\ & 0.67 \\ & 0.73 \\ & 0.75 \\ & 0.80 \end{aligned}$	$\begin{aligned} & - \\ & \bar{Z} \\ & 1.2 \end{aligned}$
$\begin{gathered} \text { Isolation } \\ \text { RFC-RF1,RF2 } \end{gathered}$	$\begin{aligned} & 216 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 810 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \\ & 2200 \mathrm{MHz} \\ & 2500 \mathrm{MHz} \\ & 3000 \mathrm{MHz} \end{aligned}$	dB	65 $\overline{52}$ $\overline{48}$ -	$\begin{aligned} & 70 \\ & 62 \\ & 58 \\ & 56 \\ & 53 \\ & 52 \\ & 53 \end{aligned}$	-
Isolation RF1-RF2	$\begin{aligned} & 216 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 810 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \end{aligned}$	dB	-	$\begin{aligned} & 88 \\ & 80 \\ & 74 \\ & 70 \\ & \hline \end{aligned}$	-
Return Loss (on-state)	$\begin{aligned} & 5-1000 \mathrm{MHz} \\ & 5-2500 \mathrm{MHz} \end{aligned}$	dB	-	$\begin{aligned} & 27 \\ & 26 \end{aligned}$	-
Return Loss (off-state)	$5-1000 \mathrm{MHz}$	dB	-	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	-
Input P1dB	2000 MHz	dBm	-	24	-
IIP3	2 tone, $5 \mathrm{dBm} /$ tone, 6 MHz spacing, $\mathrm{f} 1 \& \mathrm{f} 2=988 \& 994 \mathrm{MHz}$	dBm	-	51	-
IIP2	2 tone, $5 \mathrm{dBm} /$ tone, 6 MHz spacing, $\mathrm{f} 1 \& \mathrm{f} 2=988 \& 994 \mathrm{MHz}$	dBm	-	91	-
$\mathrm{T}_{\text {RISE, }}, \mathrm{T}_{\text {FALL }}$	10\% to 90% RF, 90% to 10% RF	ns	-	16	-
Ton, $\mathrm{T}_{\text {OfF }}$	50\% control to 90\% RF, 50\% control to 10\% RF	ns	-	8	-
Transients	In Band	mV	-	70	-
Control Current	$\left\|\mathrm{V}_{\mathrm{C}}\right\|=2.9 \mathrm{~V}$	$\mu \mathrm{A}$	-	5	10

4. External 0.01μ F DC blocking capacitors are required on all RF In/Out and RF ground ports (GT1 and GT2). See Application Schematic.

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Input Power	32 dBm
$(5-3000 \mathrm{MHz}, 2.9 \mathrm{~V}$ Control $)$	8.5 V
Operating Voltage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	

Maximum Operating Limits

Parameter	Maximum
RF Input Power	24 dBm
$\mathrm{V}_{\text {CONTROL }}$	5 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage.
6. Macom does not recommend sustained operation near these survivability limits.

Truth Table ${ }^{7}$

V1	V2	RFC - RF1	RFC - RF2
1	0	On	Off
0	1	Off	On

7. $1=+2.9$ to $+5 \mathrm{~V}, 0=0 \pm 0.2 \mathrm{~V}$.

Application Schematic

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class OB HBM and Class C3 CDM devices.

Evaluation Board

Evaluation Board Losses

Typical Performance Curves

$\mathrm{P}_{\text {IN }}=5 \mathrm{dBm}, \mathrm{V}_{\mathrm{C}}=0 \mathrm{~V} / 2.9 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

Insertion Loss RFC to RF1

Isolation RFC to RF1

Isolation RF1 to RF2 (RF1 On)

Insertion Loss RFC to RF2

Isolation RFC to RF2

Isolation RF1 to RF2 (RF2 On)

Typical Performance Curves

$\mathrm{P}_{\mathrm{IN}}=5 \mathrm{dBm}, \mathrm{V}_{\mathrm{C}}=0 \mathrm{~V} / 2.9 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

RF1 Return Loss On-state match (RF2 Off)

RF1 Return Loss Off-state (RF2 On)

RFC to RF1 Port Switch Compression @ 2 GHz

RF2 Return Loss On-state match (RF1 Off)

RF2 Return Loss Off-state (RF1 On)

RFC to RF2 Port Switch Compression @ 2 GHz

Lead-Free 3 mm 16-Lead PQFN ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

