

MASW-011087-DIE Rev. V4

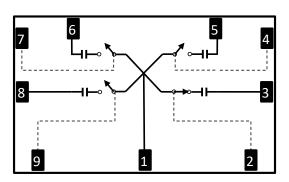
#### **Features**

- Low Loss: 0.9 dB, 16 to 35 GHz
- High Isolation: 32 dB, 16 to 35 GHz
- 30 dBm CW Power Handling @ +85°C
- Switching Speed <34 ns</li>
- Integrated DC Blocks and RF Bias Networks
- Die with G-S-G RF Pads and DC Bias Pads
- RoHS\* Compliant

### **Applications**

- Test Equipment
- Radiometers
- Switching Arrays of Radar Systems
- Point-to-Point Communications
- Multi-Assembly Components

### Description


The MASW-011087 is a high power, symmetrical SP4T switch. This broadband, reflective switch was developed for Ka-Band applications that require up to 30 dBm (1 W) power handling while maintaining low insertion loss, high isolation, and fast switching speed. These switches are used in switching arrays of radars systems, radiometers, test equipment, Point-to-Point communications systems and other high frequency applications.

The SP4T MMIC utilizes MACOM's proven AlGaAs PIN diode technology. The switch is fully passivated with silicon nitride and has an added polymer layer for scratch protection. The protective coating prevents damage to the junction and the air-bridges during handling and assembly. The die has backside metallization to facilitate an epoxy die attach process.

### **Ordering Information**

| Part Number     | Package            |
|-----------------|--------------------|
| MASW-011087-DIE | Die in Waffle Tray |
| MASW-011087-SMB | Sample Board       |

### **Functional Schematic**



# Pin Configuration (Backside metal is RF, DC, and thermal ground.)

| Pin# | Function             |  |  |
|------|----------------------|--|--|
| 1    | RF <sub>COMMON</sub> |  |  |
| 2    | B1 (Bias 1)          |  |  |
| 3    | RF1                  |  |  |
| 4    | B2 (Bias 2)          |  |  |
| 5    | RF2                  |  |  |
| 6    | RF3                  |  |  |
| 7    | B3 (Bias 3)          |  |  |
| 8    | RF4                  |  |  |
| 9    | B4 (Bias 4)          |  |  |

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



MASW-011087-DIE Rev. V4

# Electrical Specifications: $T_A$ = 25°C, $V_R$ = -10 V, $I_{SH}$ = +5 mA , $I_{SE}$ = +5 mA, $Z_0$ = 50 $\Omega$

| Parameter                                                            | Test Conditions                                               | Units | Min.       | Тур.              | Max.     |
|----------------------------------------------------------------------|---------------------------------------------------------------|-------|------------|-------------------|----------|
| Insertion Loss<br>(RF <sub>COMMON</sub> to RF <sub>X</sub> ON state) | 20.0 GHz<br>28.5 GHz<br>35.0 GHz                              | dB    |            | 0.8<br>0.8<br>0.9 | 1.1<br>— |
| Isolation<br>(RF <sub>COMMON</sub> to RF <sub>X</sub> OFF state)     | 20.0 GHz<br>28.5 GHz<br>35.0 GHz                              | dB    | <br>30<br> | 40<br>34<br>31    | _        |
| Return Loss<br>(RF <sub>COMMON</sub> )                               | 20.0 GHz<br>28.5 GHz<br>35.0 GHz                              | dB    |            | 18<br>22<br>18    | _        |
| Return Loss<br>(RF <sub>X</sub> ON state)                            | 20.0 GHz<br>28.5 GHz<br>35.0 GHz                              | dB    | _          | 18<br>22<br>20    | _        |
| CW Power Handling<br>(ON state)                                      | 28.5 GHz                                                      | dBm   |            | 30                | _        |
| Switching Speed T <sub>RISE</sub> / T <sub>FALL</sub>                | 10% - 90% RF, 26.5 GHz                                        | ns    | _          | 10 / 18           | _        |
| Switching Speed T <sub>ON</sub> / T <sub>OFF</sub>                   | 50% control to 90% RF, 26.5 GHz                               | ns    | _          | 26 / 34           | _        |
| IIP3                                                                 | 27 - 32 GHz, P <sub>IN</sub> = 10 dBm,<br>Tone Spacing 10 MHz | dBm   | _          | 43                | _        |
| P 0.1dB                                                              | 29.5 GHz                                                      | dBm   | _          | 31                | _        |

# Absolute Maximum Ratings @ +85°C1,2,3

| Parameter                | Absolute Maximum |
|--------------------------|------------------|
| Incident Power (ON path) | 30 dBm           |
| I <sub>SE</sub>          | 20 mA            |
| I <sub>SH</sub>          | 20 mA            |
| V <sub>R</sub>           | -50 V            |
| Junction Temperature     | +150°C           |
| Operating Temperature    | -40°C to +85°C   |
| Storage Temperature      | -55°C to +150°C  |

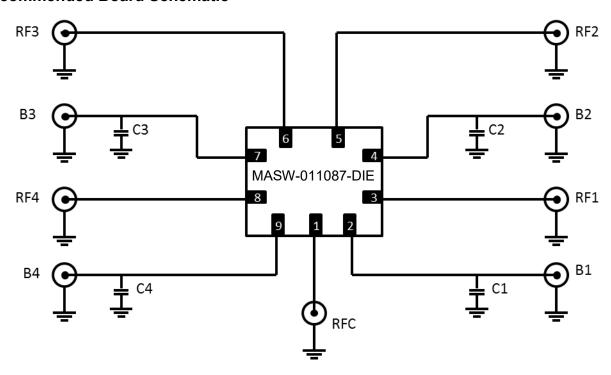
- 1. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with junction temperature less than 150°C will ensure MTTF >10<sup>6</sup> hours.

# Maximum Operation Ratings @ +25°C

| Parameter                | Maximum |  |  |
|--------------------------|---------|--|--|
| Incident Power (ON path) | 30 dBm  |  |  |
| I <sub>SE</sub>          | 10 mA   |  |  |
| I <sub>SH</sub>          | 10 mA   |  |  |
| V <sub>R</sub>           | -50 V   |  |  |

### **Handling Procedures**

Please observe the following precautions to avoid damage:


## **Static Sensitivity**

Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1A devices.



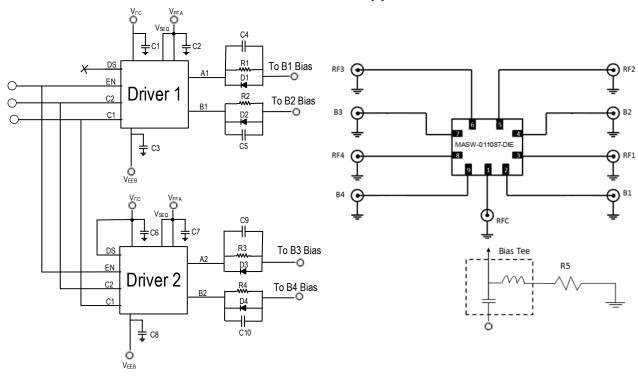
MASW-011087-DIE Rev. V4

## **Recommended Board Schematic**



## **Recommended Board Component List**

| Component Designator    | Description                                                                | P/N                     |
|-------------------------|----------------------------------------------------------------------------|-------------------------|
| RFC, RF1, RF2, RF3, RF4 | 2.4 mm - Southwest Microwave connector                                     | 1492-04A-5              |
| B1, B2, B3, B4          | Johnson/Emerson RF connector<br>Or<br>SSMA - Southwest Microwave connector | 142-0761-821<br>292-06A |
| C1, C2, C3, C4          | 22 pF High Frequency Capacitor                                             | ATC600L220              |


### **Truth Table**

| State                          | B1            | B2            | В3            | B4            |
|--------------------------------|---------------|---------------|---------------|---------------|
| RF <sub>COMMON</sub> to RF1 ON | -10 V (-5 mA) | +5 mA         | +5 mA         | +5 mA         |
| RF <sub>COMMON</sub> to RF2 ON | +5 mA         | -10 V (-5 mA) | +5 mA         | +5 mA         |
| RF <sub>COMMON</sub> to RF3 ON | +5 mA         | +5 mA         | -10 V (-5 mA) | +5 mA         |
| RF <sub>COMMON</sub> to RF4 ON | +5 mA         | +5 mA         | +5 mA         | -10 V (-5 mA) |



MASW-011087-DIE Rev. V4

### MADR-011022 Driver with MASW-011087 Switch Application Schematic



### **Parts List**

| Part         | Value    |
|--------------|----------|
| C1,C3,C6,C8  | 0.1 μF   |
| C2,C7        | 47 pF    |
| C4,C5,C9,C10 | 470 pF   |
| R1 - R4      | 650 Ω    |
| R5           | 1.2 ΚΩ   |
| D1 - D4      | 1N4148WS |

### To calculate off-chip bias resistors:

R5 = 
$$(|V_{EEB}| - 2.64 \text{ V} - 0.7 \text{ V} - 0.4 \text{ V}) / I_{SE})$$
  
R1 - 4 =  $(V_{CC} - 1.32 \text{ V} - 0.4 \text{ V}) / (I_{SH})$ 

For example, with  $V_{CC}$  = +5 V and  $V_{EEB}$  = -10 V:

Voltage drop of D1 - D4 is 0.7 V and voltage drop at driver output is 0.4 V.

# Switch Minimum Reverse DC Voltage<sup>4</sup>

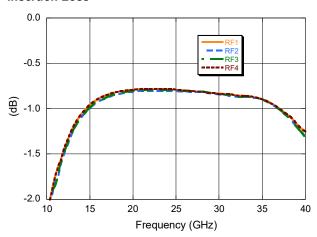
| Frequency (GHz) | Minimum Reverse<br>DC Voltage at B1 - B4 |  |  |
|-----------------|------------------------------------------|--|--|
| 14              | -6.5                                     |  |  |
| 20              | -5                                       |  |  |
| 25              | -4                                       |  |  |
| 30              | -4                                       |  |  |
| 35              | -4                                       |  |  |
| 38              | -4                                       |  |  |

4. Calculated minimum reverse bias voltage to maintain low loss under 1 W of incident power with 1.5:1 VSWR. R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a P-I-N Diode in a High Power Switch," IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990.

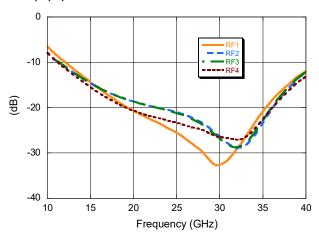


MASW-011087-DIE Rev. V4

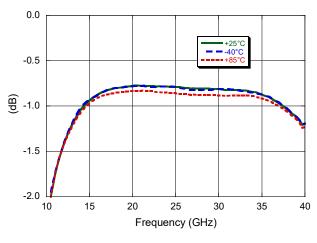
## **MADR-011022 Driver with Switch Logic Table**


|    | Inputs |    | Outputs |    |    | RF OUTPUT |          |
|----|--------|----|---------|----|----|-----------|----------|
| EN | C2     | C1 | A1      | B1 | A2 | B2        |          |
| 1  | Х      | Х  | Н       | Н  | Н  | Н         | ALL OFF  |
| 0  | 0      | 0  | L       | Н  | Н  | Н         | RF1 - ON |
| 0  | 0      | 1  | Н       | L  | Н  | Н         | RF2 - ON |
| 0  | 1      | 0  | Н       | Н  | L  | Н         | RF3 - ON |
| 0  | 1      | 1  | Н       | Н  | Н  | L         | RF4 - ON |

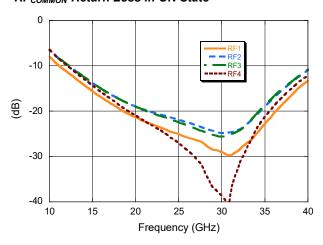



# MASW-011087-DIE

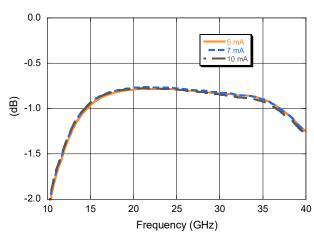
# **Typical Performance Curves**


#### Insertion Loss

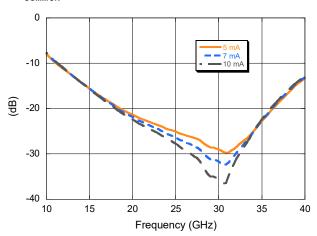



#### RF 1, 2, 3, 4 Return Loss in On State




#### Insertion Loss over Temperature



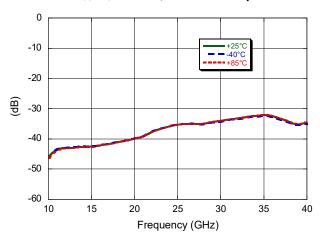

RF<sub>COMMON</sub> Return Loss in ON State



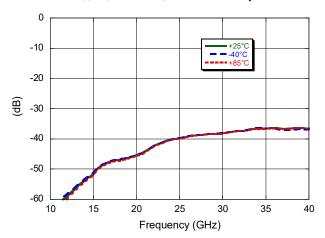
#### Insertion Loss over Bias Current



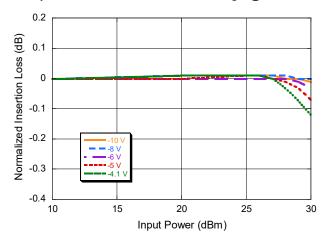
RF<sub>COMMON</sub> Return Loss in ON State over Bias Current



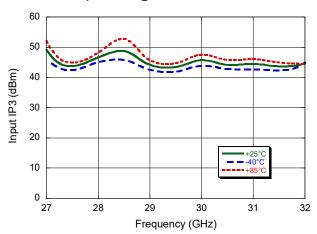




MASW-011087-DIE Rev. V4

## **Typical Performance Curves**


### Isolation RF<sub>COMMON</sub> to RF2, RF3 over Temperature

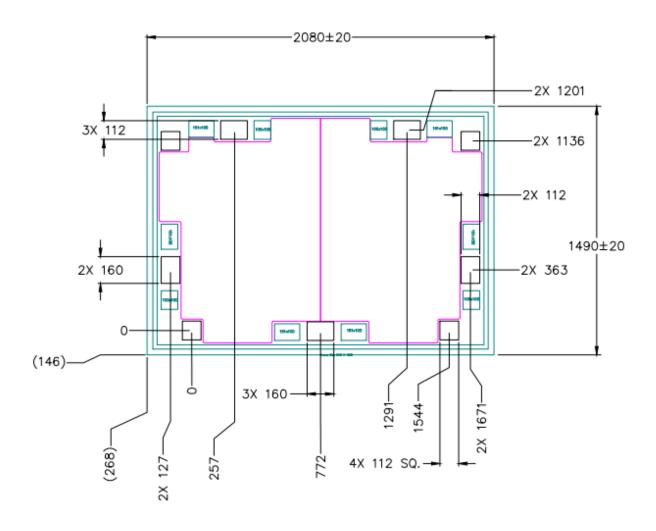



### Isolation RF<sub>COMMON</sub> to RF1, RF4 over Temperature



### Compression over Reverse-Bias Voltage @ 29.5 GHz




#### IIP3 over Temperature @ 5 V / 5 mA





MASW-011087-DIE Rev. V4

### **Outline Drawing**



### NOTES:

- UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS SHOWN AS um WITH A TOLERANCE OF ±5um.
- 2. DIE THICKNESS IS 100 ±12.5um



MASW-011087-DIE Rev. V4

### MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.