Features

- 200 W CW Incident Power @ $+85^{\circ} \mathrm{C}$
- Low Insertion Loss: 0.30 dB @ 500 MHz
- High Isolation: 48 dB @ 500 MHz
- Harmonics: -85 dBc @ 500 MHz
- Positive DC Bias
- Lead-Free 12 mm XHQFN 28-lead Package
- RoHS* Compliant

Applications

- Mil-Com/PS

Description

The MASW-011077 is a high power PIN diode SP4T switch in a common anode configuration, operating from 50 to 1000 MHz . It features low insertion loss and excellent linearity. It includes two high power ports (RF1 and RF4) capable of handling up to 200 W CW, and two lower power ports (RF2 and RF3) capable of handling up to 100 W CW of incident power at a base plate temperature of $+85^{\circ} \mathrm{C}$.

This high power switch is ideal for use on land mobile radio and MIL-COM applications that require higher CW and pulsed power operation. This device operates with positive-only DC bias, making it suitable for switch-filter and power amplifier control circuits.

The MASW-011077 is manufactured using MACOM's hybrid manufacturing process featuring high voltage PIN diodes and passive devices integrated in a 12 mm XHQFN 28-lead plastic package.

The MASW-011077 is compatible with MACOM's MADR-011021 PIN diode Driver.

Ordering Information ${ }^{1}$

Part \#	Package
MASW-011077-TR0500	500 Piece Reel
MASW-011077-SMB	Sample Test Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ${ }^{2}$

Pin	Function	Pin	Function
$1,2^{3}$	RF1 Input / V1 Bias	14	B6 Bias
$3-5$	No Connection	$15,16^{3}$	RF3 Input / V3 Bias
6^{3}	RF2 Input / V2 Bias	$17-19$	No Connection
7	No Connection	$20,21^{3}$	RF4 Input / V4 Bias
8	B3 Bias	22	B7 Bias
9	No Connection	23	B8 Bias
10	B4 Bias	24,25	RFC Input / V5 Bias
11	No Connection	26	No Connection
12	B5 Bias	27	B1 Bias
13	No Connection	28	B2 Bias
		Paddle ${ }^{4}$	Ground

2. MACOM recommends connecting unused package pins to ground.
3. RF1 and RF4 are high power ports (200 W); RF2 is a receive port; RF3 is a low power port (100 W),
4. The exposed paddle centered on the package bottom must be connected to RF, DC and thermal ground.
[^0]Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega$,
Bias $^{5}=8 \mathrm{~V} / 500 \mathrm{~mA}, 8 \mathrm{~V} / 75 \mathrm{~mA}, 150 \mathrm{~V}$ (unless otherwise defined)

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss RFC - RF1 \& RFC - RF4	$\begin{aligned} & 170 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 870 \mathrm{MHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.25 \\ & 0.30 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.55 \end{aligned}$
Insertion Loss RFC - RF2 \& RFC - RF3	$\begin{aligned} & 170 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 870 \mathrm{MHz} \end{aligned}$	dB	-	$\begin{aligned} & \hline 0.30 \\ & 0.35 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.60 \end{aligned}$
$\begin{gathered} \text { Isolation } \\ \text { RFC - RF1 \& RFC - RF4 } \end{gathered}$	$\begin{aligned} & 170 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 870 \mathrm{MHz} \end{aligned}$	dB	$\frac{50}{37}$	$\begin{aligned} & 55 \\ & 48 \\ & 41 \end{aligned}$	-
$\begin{gathered} \text { Isolation } \\ \text { RFC - RF2 \& RFC - RF3 } \end{gathered}$	$\begin{aligned} & 170 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 870 \mathrm{MHz} \end{aligned}$	dB	$\frac{53}{42}$	$\begin{aligned} & 58 \\ & 52 \\ & 47 \end{aligned}$	-
Input Return Loss RFC - All Ports	50-1000 MHz	dB	-	>14	-
CW Input Power RFC - RF1 \& RFC - RF4	$85^{\circ} \mathrm{C}$ base plate, 500 MHz	dBm W	-	$\begin{gathered} 53 \\ 200 \end{gathered}$	-
CW Input Power RFC - RF2 \& RFC - RF3	$85^{\circ} \mathrm{C}$ base plate, 870 MHz	dBm W	-	$\begin{gathered} 50 \\ 100 \end{gathered}$	-
$\begin{gathered} \text { P0.1dB } \\ \text { RFC - RF1 \& RFC - RF4 } \end{gathered}$	$85^{\circ} \mathrm{C}$ base plate, 500 MHz	dBm W	-	$\begin{gathered} 53 \\ 200 \end{gathered}$	-
$\begin{gathered} \text { P0.1dB } \\ \text { RFC - RF2 \& RFC - RF3 } \end{gathered}$	$85^{\circ} \mathrm{C}$ base plate, 870 MHz	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} \hline 51 \\ 125 \end{gathered}$	-
2nd Harmonics	$\begin{aligned} & P_{\text {IN }}=51 \mathrm{dBm}, \mathrm{~F}_{\mathrm{O}}=150 \mathrm{MHz} \\ & \mathrm{P}_{\mathrm{IN}}=51 \mathrm{dBm}, \mathrm{~F}_{\mathrm{O}}=500 \mathrm{MHz} \\ & \mathrm{P}_{\mathrm{IN}}=51 \mathrm{dBm}, \mathrm{~F}_{\mathrm{O}}=870 \mathrm{MHz} \end{aligned}$	dBc	-	$\begin{aligned} & -85 \\ & -85 \\ & -80 \end{aligned}$	-
3rd Harmonics	$\begin{aligned} & \mathrm{P}_{\mathrm{IN}}=51 \mathrm{dBm}, \mathrm{~F}_{\mathrm{O}}=150 \mathrm{MHz} \\ & \mathrm{P}_{\mathrm{IN}}=51 \mathrm{dBm}, \mathrm{~F}_{\mathrm{O}}=500 \mathrm{MHz} \\ & \mathrm{P}_{\mathrm{IN}}=51 \mathrm{dBm}, \mathrm{~F}_{\mathrm{O}}=870 \mathrm{MHz} \end{aligned}$	dBc	-	$\begin{aligned} & -85 \\ & -90 \\ & -90 \end{aligned}$	-
Ton, Toff	50\% Control - 90\% RF and 10\% RF 100 Hz Rep. Rate in Commutating Mode	$\mu \mathrm{s}$	-	10	-
$\mathrm{T}_{\text {RISE }}, \mathrm{T}_{\text {FALL }}$	10-90\% RF Voltage 100 Hz Rep. Rate in Commutating Mode	$\mu \mathrm{s}$	-	4	-
Reverse Bias Leakage Current	$\mathrm{Vr}=150 \mathrm{~V}$	$\mu \mathrm{A}$	-	0.3	1.0

5. See Bias table.

Bias Tables ${ }^{6}$

RF State	V1	V2	V3	V4	V5
```RFC - RF1 Insertion Loss RFC - RF2 Isolation RFC - RF3 Isolation RFC - RF4 Isolation```	8 V @ <1.0 $\mu \mathrm{A}$	8 V @ 75 mA	8 V @ 75 mA	8 V @ 75 mA	8 V @ 500 mA
RFC - RF2 Insertion Loss   RFC - RF1 Isolation   RFC - RF3 Isolation   RFC - RF4 Isolation	8 V @ 75 mA	8 V @ <1.0 $\mu \mathrm{A}$	8 V @ 75 mA	8 V @ 75 mA	8 V @ 500 mA
RFC - RF3 Insertion Loss   RFC - RF1 Isolation   RFC - RF2 Isolation   RFC - RF4 Isolation	8 V @ 75 mA	8 V @ 75 mA	8 V @ <1.0 $\mu \mathrm{A}$	8 V @ 75 mA	8 V @ 500 mA
RFC - RF4 Insertion Loss   RFC - RF1 Isolation   RFC - RF2 Isolation   RFC - RF3 Isolation	8 V @ 75 mA	8 V @ 75 mA	8 V @ 75 mA	8 V @ <1.0 $\mu \mathrm{A}$	8 V @ 500 mA


RF State	B1	B2	B3	B4	B5	B6	B7	B8
RFC - RF1 Insertion Loss   RFC - RF2 Isolation   RFC - RF3 Isolation   RFC - RF4 Isolation	$\begin{gathered} 0 \mathrm{~V} @ \\ 500 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$
RFC - RF2 Insertion Loss   RFC - RF1 Isolation   RFC - RF3 Isolation   RFC - RF4 Isolation	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \text { V @ } \\ 500 \text { mA } \end{gathered}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} @ \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$
RFC - RF3 Insertion Loss   RFC - RF1 Isolation   RFC - RF2 Isolation   RFC - RF4 Isolation	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \vee @ \\ 500 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$
RFC - RF4 Insertion Loss   RFC - RF1 Isolation   RFC - RF2 Isolation   RFC - RF3 Isolation	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mathrm{uA} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 \text { V @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { @ } \\ & 75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} @ \\ & <1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} @ \\ 500 \mathrm{~mA} \end{gathered}$

6. This device requires positive DC voltage to operate the PIN diodes under both the forward and reverse bias conditions. For safe operation of a reverse biased PIN diode at high power, the minimum DC bias voltage, applied to B1-B8, is dependent on RF frequency, incident power, and VSWR. See the High Power DC Bias Voltage table for high power operation.

## Maximum Operating / Storage Ratings ${ }^{7}$

Parameter	Maximum
RF Input Power   1:1 VSWR Load @ +85   RFC-RF1, RFC-RF4   RFC-RF2, RFC-RF3	$\left.\begin{array}{c}53.5 \mathrm{dBm}, 500 \mathrm{MHz} \\ 51.0 \mathrm{dBm}, 870 \mathrm{MHz} \\ \hline \text { Forward Current }\end{array}\right] 600 \mathrm{~mA}$
Reverse DC Voltage	200 V
Junction Temperature	$+175^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

7. Operating at nominal conditions with $\mathrm{T}_{J} \leq+175^{\circ} \mathrm{C}$ will ensure MTBF > $1 \times 10^{6}$ hours.
Absolute Maximum Ratings ${ }^{\mathbf{8 , 9 , 1 0}}$

Parameter	Absolute Maximum
RF Input Power   1:1 VSWR Load @ $+85^{\circ} \mathrm{C}$   RFC-RF1, RFC-RF4   RFC-RF2, RFC-RF3	$54.5 \mathrm{dBm}, 500 \mathrm{MHz}$   $52.0 \mathrm{dBm}, 870 \mathrm{MHz}$
Forward Current	750 mA
Reverse DC Voltage	400 V
Junction Temperature	$+250^{\circ} \mathrm{C}$

8. Operating at nominal conditions with $\mathrm{T}_{j} \leq+250^{\circ} \mathrm{C}$ will ensure MTBF > $3 \times 10^{4}$ hours.
9. MACOM does not recommend sustained operation near these survivability limits.
10. Exceeding any one or combination of these limits may cause permanent damage to this device.
Absolute Maximum Ratings ${ }^{8,9,10}$

High Power DC Bias Voltage ${ }^{11}$

Frequency (MHz)	DC Voltage (V)
50	80
100	50
200	30
500	20
1000	15

11. Minimum DC bias voltage, applied to $\mathrm{B} 1-\mathrm{B} 8$ as shown on the Bias Table, to maintain low loss under 200 W of incident power with 1.5:1 VSWR.

## Application Schematic



Off-Chip Component Values ${ }^{12}$

Component	Value
C1, C2, C5, C6, C7	
C8, C11, C12, C13	1000 pF
C3,C4,C9,C10,C14	270 pF
C15	1 pF
L1 - L9 ${ }^{13}$	520 nH
R1 - R4	$100 \Omega$
R5	$10 \Omega$

12. Off-chip components must be rated appropriately to ensure safe performance under DC and high RF power operation.
13. Air core inductors supplied by Microwave Components, Inc. part \# 22-6042-CCPAS-27-42-48.

## Handling Procedures

Please observe the following precautions to avoid damage:

## Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices. The device has an ESD rating for HBM Class 1C ( 1000 V ), and CDM Class C3 (1000 V).

## Typical Performance Curves

Isolation RFC - RF1


Isolation RFC - RF3


Isolation RFC - RF2


Isolation RFC - RF4


Rev. V3

## Typical Performance Curves

## Input Return Loss



Output Return Loss


Insertion Loss


## Lead Free 12 mm XHQFN 28-Lead ${ }^{\dagger}$



[^1]MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.


[^0]:    * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]:    ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
    Meets JEDEC moisture sensitivity level 3 requirements.
    Plating is NiPdAuAg.

