

### **MASW-011053**

Rev. V3

#### Features

- Broad Bandwidth Specified up to 18 GHz
- Usable up to 26 GHz
- Integrated Bias Network with External Bias Resistors
- Low Insertion Loss / High Isolation
- Fully Monolithic
- Glass Encapsulate Construction
- RoHS\* Compliant

### Applications

- Aerospace & Defense
- EW
- ISM
- Radar
- Test & Measurement

### Description

The MASW-011053 device is a SP3T broad band switch with integrated bias networks utilizing MACOM's patented HMIC (Heterolithic Microwave Integrated Circuit) process. This process allows the incorporation of silicon pedestals that form series and shunt diodes or vias by imbedding them in low loss, low dispersion glass. By using small spacing between elements, this combination of silicon and glass gives HMIC devices low loss and high isolation performance with exceptional repeatability through low millimeter frequencies. Large bond pads facilitate the use of low inductance ribbon bonds, while gold backside metallization allows for manual or automatic chip bonding via 80/20 - Au/Sn, 62/36/2 - Sn/Pb/Ag solders or electrically conductive silver epoxy.

### Ordering Information<sup>1</sup>

| Part Number        | Package            |  |  |  |  |
|--------------------|--------------------|--|--|--|--|
| MASW-011053-47300G | Die in Gel Pack    |  |  |  |  |
| MASW-011053-47300W | Die in Waffle Pack |  |  |  |  |

1. Die quantity varies.

1

### **Functional Diagram**



# Pin Configuration<sup>2</sup>

| Pin | Function         |
|-----|------------------|
| J1  | Antenna          |
| J2  | RF <sub>IN</sub> |
| J3  | RF <sub>IN</sub> |
| J4  | RF <sub>IN</sub> |
| J5  | Bias of J2       |
| J6  | Bias of J3       |
| J7  | Bias of J4       |
| BL  | Bias of Antenna  |

2. The exposed metallization on the chip bottom must be connected to RF, DC and thermal ground.

\* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.



### **Electrical Specifications:**

 $T_A = +25^{\circ}C$ ,  $Z_0 = 50 \Omega$ ,  $P_{IN} = 0 dBm$ , DC Control Current = 20 mA (unless otherwise noted)

| Parameter                    | Test Conditions                    | Units | Min.                 | Тур.                         | Max.                     |
|------------------------------|------------------------------------|-------|----------------------|------------------------------|--------------------------|
| Insertion Loss               | 2 GHz<br>6 GHz<br>12 GHz<br>18 GHz | dB    | _                    | 1.0<br>0.6<br>0.8<br>1.1     | 2.0<br>1.1<br>1.3<br>1.9 |
| Input to Output Isolation    | 2 GHz<br>6 GHz<br>12 GHz<br>18 GHz | dB    | 54<br>47<br>40<br>36 | 62<br>55<br>50<br>47         | _                        |
| Input Return Loss            | 2 GHz<br>6 GHz<br>12 GHz<br>18 GHz | dB    | _                    | 14<br>15<br>16<br>14         |                          |
| Input/Output IP3 @ 5 dBm     | 2 GHz<br>6 GHz<br>12 GHz<br>18 GHz | dBm   |                      | 46.0<br>48.8<br>50.8<br>45.0 |                          |
| Input/Output IP2 @ 5 dBm     | 2 GHz<br>6 GHz<br>12 GHz<br>18 GHz | dBm   |                      | 66.3<br>66.8<br>66.0<br>68.3 |                          |
| Switching Speed <sup>3</sup> | —                                  | ns    | —                    | 50                           | _                        |

3. Typical switching speed measured from 10% to 90% of detected RF signal driven by TTL compatible drivers using RC output spiking network, R = 50 – 200 Ω, C = 390 – 560 pF.

### **Nominal Operating Conditions**

| Parameter             | Value           |
|-----------------------|-----------------|
| Forward Bias Current  | 20 mA           |
| Reverse Bias Voltage  | 12 V            |
| RF Incident Power     | 31 dBm CW       |
| Junction Temperature  | +175°C          |
| Operating Temperature | -40°C to +85°C  |
| Storage Temperature   | -65°C to +150°C |

## Absolute Maximum Ratings<sup>4,5</sup>

| Parameter                         | Absolute Maximum |
|-----------------------------------|------------------|
| Forward Bias Current              | 60 mA            |
| Reverse Bias Voltage<br>(RF & DC) | 50 V             |
| RF Incident Power                 | 33 dBm CW        |
| Junction Temperature              | +175°C           |
| Operating Temperature             | -65°C to +125°C  |
| Storage Temperature               | -65°C to +150°C  |

4. Exceeding any one or combination of these limits may cause permanent damage to this device.

 MACOM does not recommend sustained operation near these survivability limits.

2

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



#### Handling Procedures

Please observe the following precautions to avoid damage:

### **Static Sensitivity**

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

### **Circuit Schematic**



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



MASW-011053 Rev. V3

## **Typical Performance Curves**

Isolation @ 5 V, +25°C



Insertion Loss @ 5 V, +25°C









Insertion Loss @ 5 V, 20 mA



Frequency (GHz)

Output Return Loss @ 5 V, +25°C



4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



MASW-011053 Rev. V3

IP3 80 70 5 V @ +25°0 2 V +25 2 V @ 5 V @ +85216 IP3 (dBm) 60 50 40 0 5 10 15 20 Frequency (GHz)

Typical Performance Curves @ T<sub>A</sub> = 25°C

Junction Temperature



IP2 80 70 IP2 (dBm) 60 5 V @ +25°C 50 V @ +25°C va +85 40 0 5 10 15 20 Frequency (GHz)

**Compression Power** 



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



### MASW-011053 with MADR-011020 Driver Application Schematic





### Parts List<sup>6</sup>

| Part           | Value    |
|----------------|----------|
| C1, C3, C6, C8 | 0.1 µF   |
| C2, C7         | 47 pF    |
| C4, C5, C9     | 470 pF   |
| R1, R3, R5     | 270 Ω    |
| R2, R4, R6     | 390 Ω    |
| R7             | 560 Ω    |
| D1 - D3        | 1N4148WS |

6. Resistor values calculated to provide ~20 mA of bias current and ~12 V reverse bias voltage given  $V_{CC} = 5 V$ ,  $V_{EEB} = -20 V$ , voltage drop at driver output 0.4 V,  $V_F$  of D1 and D2 0.7 V and  $V_F$  of switch diodes ~1 V (see note 6 for details).

### Switch Minimum Reverse Bias Voltage<sup>7</sup>

| Frequency (GHz) | DC Voltage (V)<br>J5, J6 & J7 |  |  |  |
|-----------------|-------------------------------|--|--|--|
| 2               | -12                           |  |  |  |
| 5               | -7                            |  |  |  |
| 10              | -5                            |  |  |  |
| 15              | -5                            |  |  |  |
| 18              | -5                            |  |  |  |

 Calculated minimum DC bias voltage to maintain low loss under 2 W of power with 1.5:1 VSWR. Reverse bias voltage should be determined based on working conditions. For example, -12 V @ 2 GHz, 2 W input power. For lower power applications, a less negative voltage can be used. R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a P-I-N Diode in a High Power Switch," IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990.

<sup>6</sup> 

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



### Truth and Bias Table using MADR-011020 Driver<sup>8</sup>

Two drivers are needed to drive a SP3T or SP4T switch. The DS pin of the first driver can be left open due to the internal active pull-down. Connect the DS pin of the second driver to  $V_{CC}$ . The combined truth table is below:

| EN | C1 | C2 | A1 | B1 | A2 | B2 | J5     | J6     | J7     | J1-J2     | J1-J3     | J1-J3     |
|----|----|----|----|----|----|----|--------|--------|--------|-----------|-----------|-----------|
| 1  | x  | x  | н  | Н  | н  | Н  | +20 mA | +20 mA | +20 mA | Isolation | Isolation | Isolation |
| 0  | 0  | 0  | L  | Н  | н  | Н  | -20 mA | +20 mA | +20 mA | Low Loss  | Isolation | Isolation |
| 0  | 0  | 1  | н  | L  | н  | Н  | +20 mA | -20 mA | +20 mA | Isolation | Low Loss  | Isolation |
| 0  | 1  | 0  | н  | н  | L  | н  | +20 mA | +20 mA | -20 mA | Isolation | Isolation | Low Loss  |

8. The forward diode voltage drop between:

J8 to J5, J6 or J7 is 1.0 V typical.

J5, J6 or J7 to GND is 0.9 V typical.

## Wire/Ribbon and Die Attachment Recommendations

#### Wire Bonding:

Thermosonic wedge wire bonding using 0.00025" x 0.003" ribbon or 0.001" diameter gold wire is recommended. A heat stage temperature of  $150^{\circ}$ C and a force of 18 to 22 grams should be used. Ultrasonic energy should be adjusted to the minimum required to achieve a good bond. RF bond wires should be kept as short and straight as possible.

#### Mounting

The HMIC switches have Ti-Pt-Au back metal. They can be die mounted with a gold-tin eutectic solder preform or conductive epoxy. Mounting surface must be clean and flat.

#### **Eutectic Die Attachment:**

An 80/20, gold-tin, eutectic solder preform is recommended with a work surface temperature of 255°C and a tool tip temperature of 265°C. When hot gas is applied, the tool tip temperature should be 290°C. The chip should not be exposed to temperatures greater than 320°C for more than 20 seconds. No more than 3 seconds should be required for attachment. Solders containing tin should not be used.

#### **Epoxy Die Attachment:**

A minimum amount of epoxy should be used. A thin epoxy fillet should be visible around the perimeter of the chip after placement. Cure epoxy per manufacturer's schedule (typically 125-150°C).

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



MASW-011053 Rev. V3

# Outline Drawing<sup>9,10,11</sup>



- 9. Unless otherwise specified, all dimensions shown as  $\mu$ m, with tolerance ±5  $\mu$ m.
- 10.Die thickness is  $125 \pm 10 \ \mu m$ .
- 11.Topside and backside metallization is gold, 2.5 µm thick typical.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

<sup>9</sup> 

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.