Features

- 200 W CW Incident Power @ $+85^{\circ} \mathrm{C}$
- Low Insertion Loss: $<0.5 \mathrm{~dB}$
- High Isolation: $>40 \mathrm{~dB}$
- Harmonics: <-70 dBc
- Operates from +V DC Bias Only
- Lead-Free 9 mm HQFN 20-lead Package
- RoHS* Compliant

Applications

- CW, Pulsed Power

Description

The MASW-011041 is a high power PIN diode SP3T switch in a common anode configuration, operating from 50 MHz to 1 GHz . It features low insertion loss and excellent linearity. It includes two high-power ports capable of handling up to 200 Watts CW and one low-power port capable of handling up to 100 Watts CW of incident power at a base plate temperature of $+85^{\circ} \mathrm{C}$.

This high power switch is ideal for use on land mobile radio and MIL-COM applications that require higher CW and pulsed power operation. This device can operate with positive-only DC supplies, making it suitable for switch-filter and power amplifier control circuits.

The MASW-011041 is manufactured using MACOM's hybrid manufacturing process featuring high voltage PIN diodes and passive devices integrated in a 9 mm HQFN 20 -lead plastic package.

The MASW-011041 is compatible with MACOM's MADR-010574 PIN Diode Driver.

Ordering Information ${ }^{1}$

Part Number	Package
MASW-011041-TR0500	500 pc reel
MASW-011041-001SMB	Sample Test Board

[^0]
Functional Schematic

Pin Configuration

Pin \#	Function
$1,3,8,9,10,13,15,17,19$	No Connection
2^{2}	RF1 Input / V1 Bias
4	B1 Bias
$5,11,16,20$	Ground
6	B2 Bias
7^{2}	RF2 Input / V2 Bias Bias
12	RF3 Input / V3 Bias Common / V4 Bias
14^{2}	Ground
18	Paddle 3

2. RF1 and RF3 are high power ports (200 W); RF2 is a low power port (100 W).
3. The exposed paddle centered on the package bottom must be connected to RF, DC and thermal ground.
[^1]Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$ (unless otherwise defined), $\mathrm{Z}_{0}=50 \Omega$
Bias $^{4}=5 \mathrm{~V} / 400 \mathrm{~mA}, 5 \mathrm{~V} / 200 \mathrm{~mA}, 100 \mathrm{~V} / 25 \mathrm{~mA}$ Bias $^{4}=5$ V / 400 mA, 5 V / 200 mA, 100 V / 25 mA

Parameter	Test Conditions	Units	Min.	Typ.	Max.
$\begin{gathered} \text { Insertion Loss } \\ \text { RFC - RF1 \& RFC - RF3 } \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{GHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.30 \\ & 0.40 \end{aligned}$	$\overline{0.60}$
Insertion Loss RFC - RF2	$\begin{aligned} & 0.5 \mathrm{GHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.25 \\ & 0.40 \end{aligned}$	$\overline{0.55}$
$\begin{gathered} \text { Isolation } \\ \text { RFC }- \text { RF1 \& RFC - RF3 } \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{GHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	dB	$\overline{40}$	$\begin{aligned} & 51 \\ & 45 \end{aligned}$	-
$\begin{aligned} & \text { Isolation } \\ & \text { RFC - RF2 } \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{GHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	dB	$\overline{45}$	$\begin{aligned} & 56 \\ & 52 \end{aligned}$	-
Input Return Loss RFC-RF1 \& RFC - RF3	$\mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$	dB	-	>14	-
Input Return Loss RFC - RF2	$\mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$	dB	-	>21	-
CW Input Power RFC - RF1 \& RFC - RF3	$85^{\circ} \mathrm{C}$ base plate, 550 MHz 950 MHz	dBm / W	-	$\begin{aligned} & 53 / 200 \\ & 52 / 158 \end{aligned}$	-
CW Input Power RFC - RF2	$85^{\circ} \mathrm{C}$ base plate, 550 MHz 950 MHz	dBm / W	-	$\begin{gathered} 50 / 100 \\ 49 / 80 \end{gathered}$	-
$\begin{gathered} \mathrm{P} 0.1 \mathrm{~dB} \\ \text { RFC }- \text { RF1 \& RFC }- \text { RF3 } \end{gathered}$	$85^{\circ} \mathrm{C}$ base plate, 550 MHz 950 MHz	dBm	-	$\begin{aligned} & 54 \\ & 53 \end{aligned}$	-
$\begin{gathered} \text { P0.1dB } \\ \text { RFC - RF2 } \end{gathered}$	$85^{\circ} \mathrm{C}$ base plate, 550 MHz 950 MHz	dBm	-	$\begin{aligned} & 51 \\ & 50 \end{aligned}$	-
2nd Harmonics	$\mathrm{P}_{\text {IN }}=49 \mathrm{dBm}, \mathrm{F}=950 \mathrm{MHz}$	dBc	-	-75	-
3rd Harmonics	$\mathrm{P}_{\text {IN }}=49 \mathrm{dBm}, \mathrm{F}=950 \mathrm{MHz}$	dBc	-	-85	-
Ton, $\mathrm{T}_{\text {OFF }}$	(50\% CTL - 90\% RF and 10\% RF) 1 MHz Rep Rate in Modulating Mode	$\mu \mathrm{s}$	-	3.5	-
$\mathrm{T}_{\text {RISE }}, \mathrm{T}_{\text {FALL }}$	(10-90\% RF Voltage) 1 MHz Rep Rate in Modulating Mode	$\mu \mathrm{s}$	-	0.8	-

[^2]Nominal Operating Conditions

Parameter	Value
Forward Current $\mathrm{J} 1 ~ \& ~ J 3 ~$ J 2	400 mA
Reverse DC Voltage	$\|-140 \mathrm{~V}\|$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Forward Current $\mathrm{J} 1 \& \mathrm{J3}$ J 2	450 mA
Reverse DC Voltage	$\|-150 \mathrm{~V}\|$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.

Typical Performance Curves:

Insertion Loss

Isolation RFC - RF1

Isolation RFC - RF3

Return Loss

Isolation RFC - RF2

Rev. V3

Application Schematic with MADR-010574 Driver ${ }^{7}$

Parts List

Part	Value	Part	Value
$\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 6, \mathrm{C} 7$	1000 pF	$\mathrm{L} 1-\mathrm{L} 4$	680 nH
$\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 8$	270 pF	$\mathrm{R} 1-\mathrm{R} 3^{7}$	$4.4 \mathrm{k} \Omega$
$\mathrm{C} 9, \mathrm{C} 12$	$0.01 \mu \mathrm{~F}$	$\mathrm{R} 4, \mathrm{R} 5$	10Ω
$\mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 13, \mathrm{C} 14$	$0.1 \mu \mathrm{~F}$	$\mathrm{R} 6, \mathrm{R} 7$	$499 \mathrm{k} \Omega$

7. Resistor values calculated to provide $\sim 25 \mathrm{~mA}$ of shunt diode bias current given $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{4}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=100 \mathrm{~V}$.

Truth and Bias Table using MADR-010574 Driver ($\mathrm{V}_{\mathrm{DD}}=+100 \mathrm{~V}^{8}$)

RF State	C1	C2	C3	C4	V1 (V)	V2 (V)	V3 (V)	B1 (V)	B2 (V)	$\begin{aligned} & \text { B3 } \\ & \text { (V) } \end{aligned}$	V4 (V)
RFC - RF1 Isolation RFC - RF2 Isolation RFC - RF3 Isolation	1	1	1	1	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & +5 \mathrm{~V} \\ & 0 \mathrm{~mA} \end{aligned}$
RFC - RF1 Low Loss RFC - RF2 Isolation RFC - RF3 Isolation	0	1	1	1	$\begin{gathered} 0 \mathrm{~V} \\ -400 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{gathered} +100 \mathrm{~V} \\ 0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V} \\ 400 \mathrm{~mA} \end{gathered}$
RFC - RF2 Low Loss RFC - RF1 Isolation RFC - RF3 Isolation	1	0	1	1	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -200 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +100 \mathrm{~V} \\ 0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V} \\ 200 \mathrm{~mA} \end{gathered}$
RFC - RF3 Low Loss RFC - RF1 Isolation RFC - RF2 Isolation	1	1	0	1	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +100 \mathrm{~V} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -400 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \\ -25 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +100 \mathrm{~V} \\ 0 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V} \\ 400 \mathrm{~mA} \end{gathered}$

8. DC reverse bias of a PIN diode operating at a high power is dependent on RF frequency, incident power, and VSWR. See Minimum Reverse DC Voltage table for high power operation.

Minimum Reverse DC Voltage ${ }^{9}$

Frequency (MHz)	Minimum Reverse DC Voltage
50	$\|-142 \mathrm{~V}\|$
100	$\|-102 \mathrm{~V}\|$
200	$\|-60 \mathrm{~V}\|$
500	$\mid-26 \mathrm{~V} \mathrm{\mid}$
1000	$\mid-13 \mathrm{~V} \mathrm{\mid}$

9. Required to maintain low loss under 200 W of incident power with 1.5:1 VSWR.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B HBM devices.

Lead Free 9 mm HQFN 20-Lead ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAuAg.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: 1. Reference Application Note M513 for reel size information.
[^1]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^2]: 4. See Bias table.
