

MASW-011029

Rev. V4

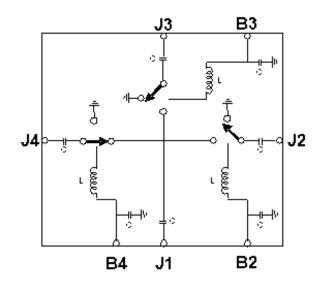
#### **Features**

- 60 110 GHz Broadband Operating Frequency
- 1.3 dB Insertion Loss
- 33 dB Isolation
- Silicon Nitride Passivation
- BCB Scratch Protection
- Lead-Free GaAs MMIC Chip
- RoHS\* Compliant

### **Applications**

- SATCOM
- Millimeter-wave
- 77 GHz Automotive Cruise Control Radar
- 94 GHz Imaging in Astronomy, Defense, & Security

### **Description**


The MASW-011029 is a wideband SP3T switch manufactured using MACOM's patented AlGaAs PIN Diode MMIC process, on a semi-insulating GaAs substrate. The device is fully passivated with silicon nitride and has an additional layer of BCB for scratch protection. This protective coating prevents damage to the circuit during automated or manual handling. These devices are suitable for pick and place insertion.

Each RF port contains DC blocking capacitors and a DC bias circuit consisting of high impedance lines and RF bypass capacitors. This device has 100 um gold plated bonding pads at all RF and DC ports. RF and DC ground backside gold plating allows conventional chip bonding techniques using 80Au/20Sn solder, Indalloy solder, or electrically conductive silver epoxy.

### **Ordering Information**

| Part Number        | Package    |  |  |
|--------------------|------------|--|--|
| MASW-011029-14140W | Waffle Pak |  |  |

### **Functional Schematic**



## Bondpad Configuration<sup>1,2</sup>

| Bondpad # | Function          |  |  |
|-----------|-------------------|--|--|
| J1        | Common, RF1 (GSG) |  |  |
| J2        | Output, RF2 (GSG) |  |  |
| B2        | J2 Bias Control   |  |  |
| J3        | Output, RF3 (GSG) |  |  |
| В3        | J3 Bias Control   |  |  |
| J4        | Output, RF4 (GSG) |  |  |
| B4        | J4 Bias Control   |  |  |

- 1. Bondpad metal is gold and backside metal is gold.
- 2. The backside metal must be connected to RF and DC ground.

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



## MASW-011029

Rev. V4

## Electrical Specifications: Freq. = 75 - 100 GHz, $T_A$ = 25°C, +10 mA / -25 V, $Z_0$ = 50 $\Omega$

| Parameter                                 | Units | Min. | Тур. | Max. |
|-------------------------------------------|-------|------|------|------|
| Insertion Loss                            | dB    | _    | 1.3  | _    |
| Isolation                                 | dB    | _    | 33   | _    |
| Forward Bias, 10 mA                       | V     | 1.15 | _    | 1.40 |
| Blocking Capacitor Leakage Current, -25 V | nA    | _    | _    | 50   |
| Diode Leakage Current, -32 V              | nA    | _    | _    | 50   |
| Switching Speed, 10% - 90% RF Voltage     | ns    | _    | 2    | _    |

## **Nominal Operating Conditions**

| Parameter                         | Value           |  |  |
|-----------------------------------|-----------------|--|--|
| Input Power                       | 21 dBm          |  |  |
| DC Current, per diode             | 10 mA           |  |  |
| DC Voltage                        | -5 V            |  |  |
| Junction Temperature <sup>5</sup> | +150°C          |  |  |
| Operating Temperature             | -25°C to +85°C  |  |  |
| Storage Temperature               | -65°C to +150°C |  |  |

## Absolute Maximum Ratings<sup>3,4</sup>

| Parameter                         | Absolute Maximum |  |  |  |
|-----------------------------------|------------------|--|--|--|
| Input Power                       | 23 dBm           |  |  |  |
| DC Current, per diode             | 15 mA            |  |  |  |
| DC Voltage                        | -25 V            |  |  |  |
| Junction Temperature <sup>5</sup> | +150°C           |  |  |  |
| Operating Temperature             | -25°C to +85°C   |  |  |  |
| Storage Temperature               | -65°C to +150°C  |  |  |  |

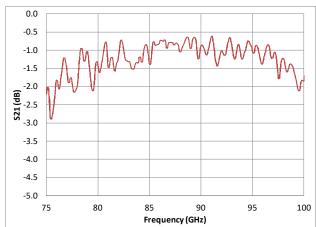
- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T<sub>J</sub> ≤ +150°C will ensure MTBF > 1 x 106 hours.

### **Handling Procedures**

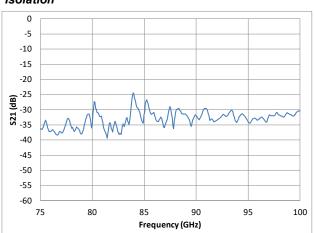
Please observe the following precautions to avoid damage:

### **Static Sensitivity**

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

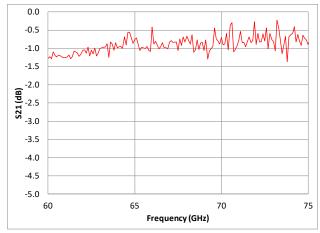



## MASW-011029

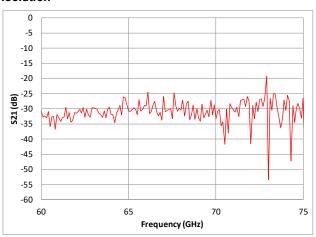

Rev. V4

## MASW-011029 Typical Performance Curves, 75 - 100 GHz<sup>6</sup>

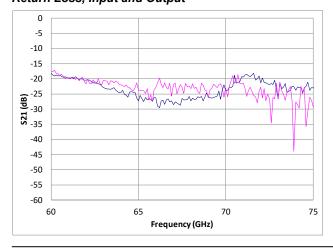
#### Insertion Loss




#### Isolation




## MA4GC6774 (Former Part Number) Reference Data, 60 - 75 GHz<sup>6</sup>


#### Insertion Loss



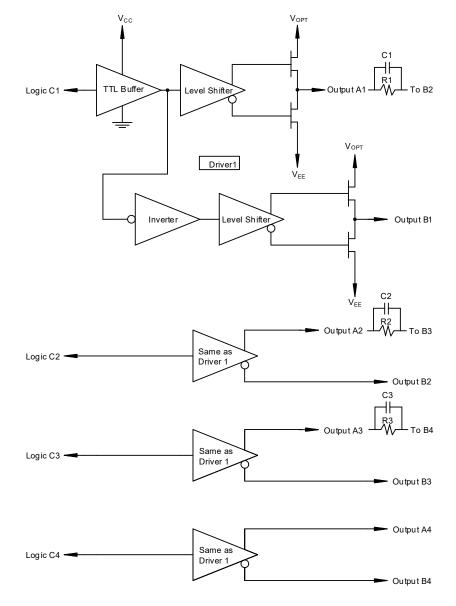
#### Isolation



### Return Loss, Input and Output



Measured data is highly dependent on fixturing and equipment setup.




MASW-011029

Rev. V4

## Application Schematic with MADR-009190 Driver

Not shown in the schematic below, place 0.1  $\mu$ F filter caps as close as possible to  $V_{CC}$ ,  $V_{OPT}$  and  $V_{EE}$  pins.  $V_{CC}$  and  $V_{OPT}$  set to +5 V.  $V_{EE}$  set to -5 V.



### **Parts List**

| Part                    | Value  |
|-------------------------|--------|
| C1, C2, C3              | 470 pF |
| C4, C5, C6 <sup>7</sup> | 0.1 μF |
| R1, R2, R3              | 320 Ω  |

7. C4, C5 and C6 are the  $V_{\text{CC}}$ ,  $V_{\text{OPT}}$  and  $V_{\text{EE}}$  filter capacitors and are not shown in schematic.



MASW-011029

Rev. V4

#### Truth Table and Bias Conditions with MADR-009190 Driver

| RF Inputs                                                           | Driver C1 | Driver C2 | Driver C3 | B2                 | В3                 | B4                 |
|---------------------------------------------------------------------|-----------|-----------|-----------|--------------------|--------------------|--------------------|
| J1 to J2 Isolation<br>J1 to J3 Isolation<br>J1 to J4 Isolation      | 1         | 1         | 1         | 10 mA <sup>9</sup> | 10 mA <sup>9</sup> | 10 mA <sup>9</sup> |
| J1 to J2 Insertion Loss<br>J1 to J3 Isolation<br>J1 to J4 Isolation | 0         | 1         | 1         | -5 V <sup>8</sup>  | 10 mA <sup>9</sup> | 10 mA <sup>9</sup> |
| J1 to J2 Isolation<br>J1 to J3 Insertion Loss<br>J1 to J4 Isolation | 1         | 0         | 1         | 10 mA <sup>9</sup> | -5 V <sup>8</sup>  | 10 mA <sup>9</sup> |
| J1 to J2 Isolation<br>J1 to J3 Isolation<br>J1 to J4 Insertion Loss | 1         | 1         | 0         | 10 mA <sup>9</sup> | 10 mA <sup>9</sup> | -5 V <sup>7</sup>  |

<sup>8.</sup> Minimum reverse bias voltage (V<sub>R</sub>) should be determined based on working conditions. For example, V<sub>R</sub> = -5 V @ 23 dBm input power. For lower applications, a less negative voltage can be used. R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a PIN Diode in a High Power Switch," IEEE Transactions on Microwave Theory and Techniques, Vol.38,No.12, December 1990. For higher linearity the V<sub>R</sub> it may be as high as -25 V.

#### **Solder Die Attach**

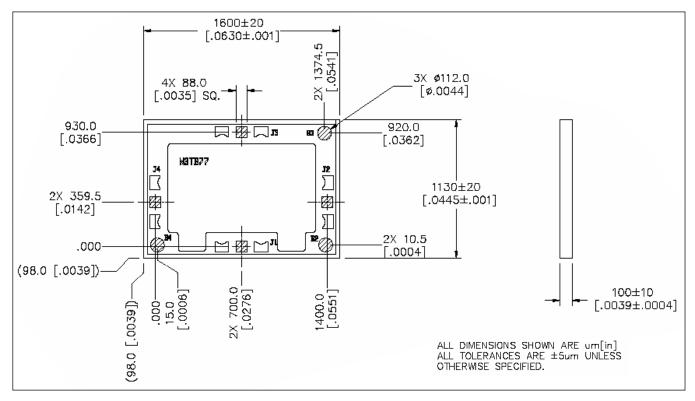
All die attach and bonding methods should be compatible with gold metal. Solder which does not scavenge gold, such as 80 Au/20 Sn or Indalloy #2 is recommended. Do not expose die to a temperature greater than 300°C for more than 10 seconds.

## Electrically Conductive Epoxy Die Attach

Assembly can be preheated to approximately 125°C. Use a controlled thickness of approximately 2 mils for best electrical conductivity and lower thermal resistance. A thin epoxy fillet should be visible around the perimeter of the chip after placement. Cure epoxy per manufacturer's schedule. For extended cure times, temperatures should be kept below 150°C.

#### Wire / Ribbon Bonding

Wedge thermo compression bonding may be used to attach ribbons to the RF bonding pads. Gold ribbons should be 1/4 by 3 mil sq. for lowest inductance. The same 1/4 by 3 mil sq. gold ribbon or 1 mil dia. gold wire is recommended for all DC pads.


<sup>9.</sup> Forward bias current (I<sub>F</sub>) is set using external bias resistors (R<sub>BIAS</sub>) placed at pins B2, B3, and B4, where R<sub>BIAS</sub> = ((V<sub>CC</sub> - 1.32 V) / I<sub>F</sub> - 50). 50 Ω is the approximate impedance of the MADR-009190 driver P-channel and N-channel FET's.



MASW-011029

Rev. V4

## **Outline Drawing**





MASW-011029

Rev. V4

#### MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.