

Rev. V1

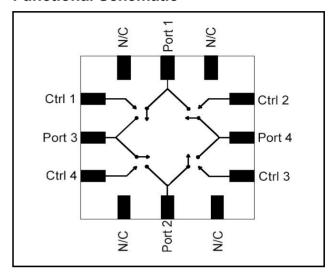
Features

- Low Insertion Loss 0.7 dB at 2.4 GHz
- Ideal for WLAN IEEE 802.11b
- 0.5 micron GaAs pHEMT Process
- Lead-Free 3 mm 12-Lead PQFN Package
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant version of MASWSS0040

Description

M/A-COM's MASW-009460 is a GaAs pHEMT MMIC DPDT diversity switch in a lead-free 3 mm 12-lead PQFN package. The MASW-009460 is ideally suited for applications where very small size and low cost are required.

Typical applications are for WLAN IEEE 802.11b/g systems that employ two antennas for transmit and receive diversity. This part is designed for low insertion loss and allows for independent control and selection of each switch path. This part can be used in all systems operating up to 3.0 GHz requiring moderate power and diversity switching.


The MASW-009460 is fabricated using a 0.5 micron gate length GaAs pHEMT process. The process features full passivation for performance and reliability.

Ordering Information 1,2

Part Number	Package		
MASW-009460-TR1000	1000 piece reel		
MASW-009460-TR3000	3000 piece reel		
MASW-009460-001SMB	Sample Test Board		

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

Pin Name	Description		
Ctrl 1	Control 1		
Port 3	RF Port 3		
Ctrl 4	Control 4		
N/C	No Connection		
Port 2	RF Port 2		
N/C	No Connection		
Ctrl 3	Control 3		
Port 4	RF Port 4		
Ctrl 2	Control 2		
N/C	No Connection		
Port 1	RF Port 1		
N/C	No Connection		
Paddle ³	RF & DC Ground		
	Ctrl 1 Port 3 Ctrl 4 N/C Port 2 N/C Ctrl 3 Port 4 Ctrl 2 N/C Port 1 N/C		

The exposed pad centered on the package bottom must be connected to the RF and DC ground.

1

 $^{^{\}star}$ Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

Rev. V1

Electrical Specifications: $T_A = 25$ °C, $V_C = 3$ V, $P_{IN} = 10$ dBm, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss ⁴	0.5 - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 2.5 GHz 2.5 - 3.0 GHz	dB dB dB dB		0.5 0.6 0.7 0.8	 1.2
Isolation ⁵	0.5 - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 2.5 GHz 2.5 - 3.0 GHz	dB dB dB dB	 17.0 	28.0 21.0 19.0 18.0	
Return Loss	0.5 - 3.0 GHz	dB	_	20	_
IP3	Two Tone +5 dBm, 5 MHz Spacing, > 50 MHz $V_c = 0.2 \text{ V} / 2.3 \text{ V} $ $V_c = 0.2 \text{ V} / 3.0 \text{ V}$	dBm dBm	_	47 52	_
P1dB	V _c = 0.2 V / 2.3 V V _c = 0.2 V / 3.0 V	dBm dBm		26 31	
2 nd Harmonic	2.4 GHz, P_{IN} = 20 dBm, V_C = 0.2 V / 2.5 V	dBc	_	70	_
3 rd Harmonic	2.4 GHz, P_{IN} = 20 dBm, V_{C} = 0.2 V / 2.5 V	dBc	_	60	_
T _{RISE} , T _{FALL}	10% to 90% RF and 90% to 10% RF	ns	_	12/20	_
T _{ON} , T _{OFF}	50% Control to 90% RF 50% Control to 10% RF	ns ns	_	35 40	_
Control Current	V _C = 3 V	μA	_	5	25

^{4.} Insertion Loss can be optimized by varying the DC Blocking Capacitor value, i.e. 1000 pF for 100 MHz - 1.0 GHz, 27 pF for 0.5 - 3.0 GHz.

Absolute Maximum Ratings ^{6,7}

Parameter	Absolute Maximum			
Input Power 3V Control	+32 dBm			
Input Power 5V Control	+34 dBm			
Operating Voltage	+8.5 volts			
Operating Temperature	-40°C to +85°C			
Storage Temperature	-65°C to +150°C			

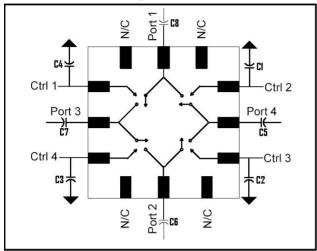
Exceeding any one or combination of these limits may cause permanent damage to this device.

Handling Procedures

Please observe the following precautions to avoid damage:

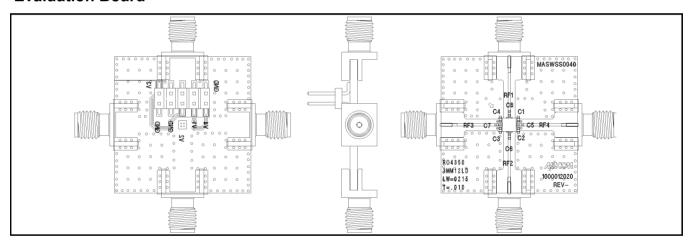
Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


^{5.} Isolation of two paths on either side of the selected path.

M/A-COM does not recommend sustained operation near these survivability limits.

Rev. V1


Circuit Block Diagram

Parts List

Part	Description			
C1 – C4	27 pF Decoupling Capacitor			
C5 – C8	27 pF DC Blocking Capacitor			
RF1 – RF4	RF connector			
Item 3	10-pin solder connector			

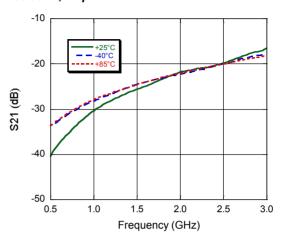
Evaluation Board

Truth Table 8,9

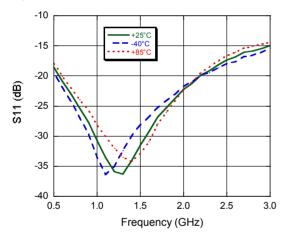
Control V1	Control V2	Control V3	Control V4	Port 1 - Port 3	Port 1 - Port 4	Port 2 - Port 4	Port 2 - Port 3
1	0	0	0	On	Off	Off	Off
0	1	0	0	Off	On	Off	Off
0	0	1	0	Off	Off	On	Off
0	0	0	1	Off	Off	Off	On
1	0	1	0	On	Off	On	Off
0	1	0	1	Off	On	Off	On

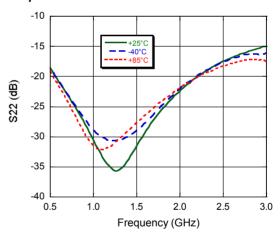
^{8.} External DC blocking capacitors are required on all RF ports.

^{9.} $0 = 0 \text{ V} \pm 0.2 \text{ V}$, 1 = +2.3 V to 5.0 V

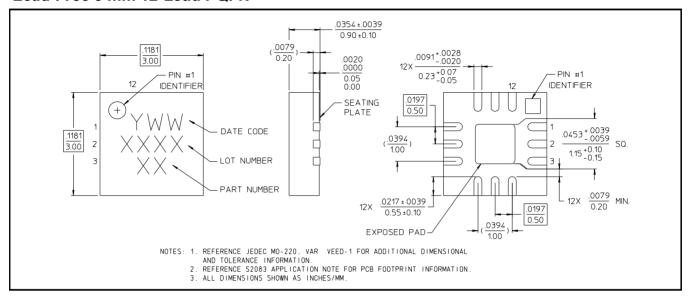

Rev. V1

Typical Performance Curves


Insertion Loss, 27 pF


Isolation, 27 pF

Input Return Loss


Output Return Loss

Rev. V1

Lead-Free 3 mm 12-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper

MASW-009460

GaAs DPDT Diversity Switch 0.5 - 3.0 GHz

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.