

**MAPS-010166-DIE** 

Rev. V1

#### **Features**

- 6 Bit Digital Phase Shifter
- 360° Coverage with LSB = 5.6°
- Parallel Control
- Low DC Power Consumption
- Minimal Attenuation Variation over Phase Shift Range
- Bidirectional RF Input/Output
- EAR99
- Bare Die
- RoHS\* Compliant

#### **Applications**

- Cellular Infrastructure
- Phase Array Radars
- Frequency Upconverters
- Test Instruments
- General Purpose

#### **Description**


The MAPS-010166-DIE is a GaAs pHEMT 6-bit X-band digital phase shifter. Step size is 5.6° providing phase shift from 0° to 360° in 5.6° steps. This design has been optimized to minimize variation in attenuation over the phase shift range.

The MAPS-010166-DIE is ideally suited for use where high phase accuracy with minimum loss variation over the phase shift range are required. Typical applications include communications antennas and phased array radars. The die size is 2.44 x 1.34 x 0.1 mm.

### **Ordering Information**

| Part Number     | Package  |
|-----------------|----------|
| MAPS-010166-DIE | Bare Die |

#### **Functional Schematic**



## Pad Configuration<sup>1</sup>

| Pad # | Name              | Function      |  |  |  |
|-------|-------------------|---------------|--|--|--|
| 1, 16 | GND               | Ground        |  |  |  |
| 2     | RF <sub>IN</sub>  | RF Input      |  |  |  |
| 3     | A1                | 5.6° Control  |  |  |  |
| 4, 6  | N/C               | No Connect    |  |  |  |
| 5     | A2                | 11.2° Control |  |  |  |
| 7     | A3                | 22.5° Control |  |  |  |
| 8     | В3                | 22.5° Control |  |  |  |
| 9     | A4                | 45° Control   |  |  |  |
| 10    | B4                | 45° Control   |  |  |  |
| 11    | A5                | 90° Control   |  |  |  |
| 12    | B5                | 90° Control   |  |  |  |
| 13    | A6                | 180° Control  |  |  |  |
| 14    | В6                | 180° Control  |  |  |  |
| 15    | RF <sub>out</sub> | RF Output     |  |  |  |

The backside of the die must be connected to RF, DC, and thermal ground.

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



MAPS-010166-DIE Rev. V1

## **Electrical Specifications:**

Freq. = 8 - 12 GHz,  $T_A$  = 25°C,  $Z_0$  = 50  $\Omega$ ,  $P_{IN}$  = 0 dBm,  $V_L$  = -5 V &  $V_H$  = 0 V

| Parameter                                          | Test Conditions                                                                                                             |       | Min.<br>8 GHz /<br>12 GHz                                                                  | Тур.  | Max.<br>8 GHz /<br>12 GHz                                                             |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|
| Insertion Loss<br>(Any Phase State)                | Any Phase State                                                                                                             | dB    | _                                                                                          | 5.0   | 7.0 / 8.75                                                                            |
| Attenuation Variation                              | Across All Phase States                                                                                                     |       |                                                                                            | ± 1.4 | 1.9 / 3.2                                                                             |
| RMS Attenuation Error                              | All Values Relative to Insertion Loss at Reference Phase                                                                    |       | _                                                                                          | 0.7   | _                                                                                     |
| RMS Phase Error <sup>2</sup>                       | All Values Relative to Reference Phase                                                                                      |       | _                                                                                          | 3.0   | _                                                                                     |
| Phase Accuracy<br>Relative to Reference Loss State | 5.6 Degree Bit<br>11.2 Degree Bit<br>22.5 Degree Bit<br>45 Degree Bit<br>90 Degree Bit<br>180 Degree Bit<br>Sum of All Bits |       | 4.5 / 4.25<br>8.5 / 6.5<br>22 / 23<br>44 / 39.5<br>89.5 / 90.5<br>176 / 179<br>-4.5 / -0.5 |       | 6.5 / 7.25<br>10.5 / 9.5<br>26 / 27<br>49 / 44.5<br>95 / 96<br>183 / 186<br>3.5 / 7.5 |
| VSWR                                               | RF IN / RF OUT                                                                                                              | Ratio |                                                                                            | 1.8:1 | _                                                                                     |
| 1 dB Compression                                   | Reference State                                                                                                             | dBm   | _                                                                                          | 27    | _                                                                                     |
| Input IP3                                          | Two-tone inputs up to +5 dBm                                                                                                | dBm   | _                                                                                          | 45    | _                                                                                     |
| T <sub>RISE</sub> , T <sub>FALL</sub>              | 10% to 90% RF, 90% to 10% RF                                                                                                | ns    | _                                                                                          | 50    | _                                                                                     |

<sup>2.</sup> RMS is calculated across all 64 amplitude or phase states relative to the amplitude or phase in the 0° phase state at a given frequency.

$$\delta phase\_RMS = \sqrt{\frac{1}{n}\sum_{m=1}^{n}\delta^2 phase - \left(\frac{1}{n}\sum_{m=1}^{n}\delta phase\right)^2}$$

## Truth Table<sup>3</sup> (Major BITs)

| A1             | B2 | A2             | В3 | А3             | В3             | <b>A</b> 4     | B4             | A5             | B5             | A6             | В6                    | Phase Shift     |
|----------------|----|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|-----------------|
| V <sub>L</sub> | Х  | $V_L$          | Х  | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$               | Reference Phase |
| V <sub>H</sub> | Х  | $V_L$          | Х  | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$               | 5.6°            |
| V <sub>L</sub> | Х  | V <sub>H</sub> | Х  | V <sub>L</sub> | V <sub>H</sub> | $V_L$          | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub>        | 11.2°           |
| V <sub>L</sub> | Х  | $V_L$          | Х  | V <sub>H</sub> | V <sub>L</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub>        | 22.5°           |
| $V_L$          | Х  | $V_L$          | Χ  | $V_L$          | $V_{H}$        | V <sub>H</sub> | V <sub>L</sub> | $V_L$          | $V_{H}$        | $V_L$          | $V_{H}$               | 45°             |
| V <sub>L</sub> | Х  | $V_L$          | Х  | V <sub>L</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>L</sub> | $V_{H}$               | 90°             |
| V <sub>L</sub> | Х  | $V_L$          | Х  | V <sub>L</sub> | V <sub>H</sub> | $V_L$          | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>H</sub> | V <sub>L</sub>        | 180°            |
| V <sub>H</sub> | X  | V <sub>H</sub> | X  | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | V <sub>L</sub> | V <sub>H</sub> | <b>V</b> <sub>L</sub> | 354.4°          |

<sup>3.</sup>  $V_L = -5 V$ ,  $V_H = 0 V$ .



# MAPS-010166-DIE

Rev. V1

## **Maximum Operating Conditions**

| Parameter             | Maximum        |
|-----------------------|----------------|
| Input Power           | 27 dBm         |
| Input Voltage         | 0 to -5 V      |
| Operating Temperature | -40°C to +85°C |

## **Absolute Maximum Ratings**<sup>4,5</sup>

| Parameter             | Absolute Maximum |  |  |  |  |
|-----------------------|------------------|--|--|--|--|
| Input Power           | 29 dBm           |  |  |  |  |
| Operating Temperature | -40°C to +85°C   |  |  |  |  |
| Storage Temperature   | -65°C to +150°C  |  |  |  |  |

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.

## **Handling Procedures**

Please observe the following precautions to avoid damage:

#### **Static Sensitivity**

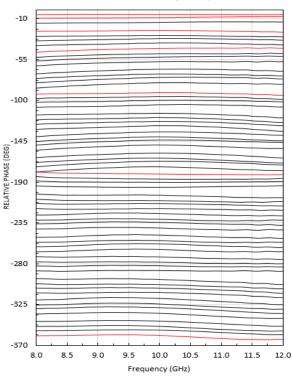
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these 200 V HBM, Class 0B devices.

#### **Mounting and Bonding Information**

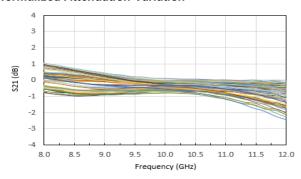
The DIE should be directly attached to the RF/DC ground plane; either with solder (AuSn) or a thin application of conductive epoxy. Avoid overflows.

Any connecting microstrip (50  $\Omega$  Transmission Line) substrate should be brought as close as possible to the die in order to minimize bond wire inductance. A typical spacing between die and microstrip substrate should be kept between 75 - 125  $\mu$ m for best RF behavior.

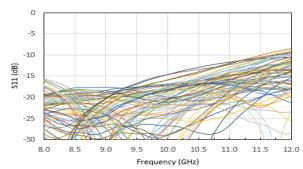
Two Bond-Wires are recommended on pad 2, and 15 (1mil diameter each). All bonds should be kept as short as possible.


Use minimum ultrasonic energy for reliable wire bonds.

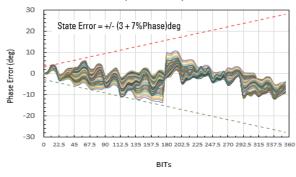



## MAPS-010166-DIE Rev. V1

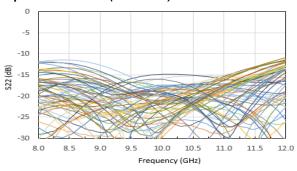
## **Typical Performance Curves**


#### Normalized Phase Shift vs. Frequency

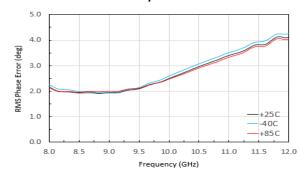



#### Normalized Attenuation Variation

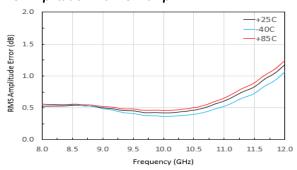



#### Input Return Loss (All States)




#### Phase Error vs. State (All States)




#### Output Return Loss (All States)



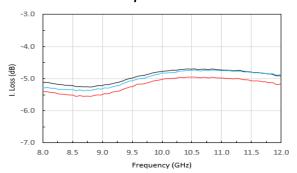
#### RMS Phase Error vs. Temp



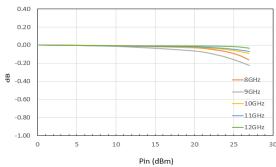
#### RMS Amplitude Error vs. Temp



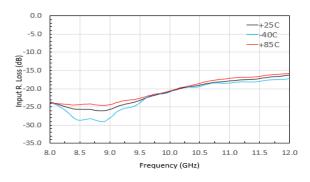
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit <a href="https://www.macom.com">www.macom.com</a> for additional data sheets and product information.

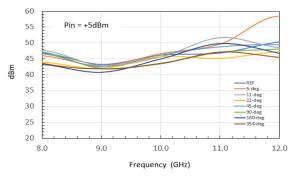



## MAPS-010166-DIE Rev. V1

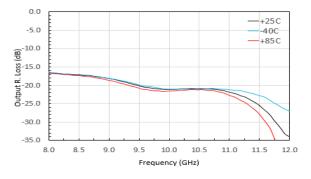
## **Typical Performance Curves**


#### Insertion Loss vs. Temp




## P1dB vs. $P_{IN}$ and Frequency



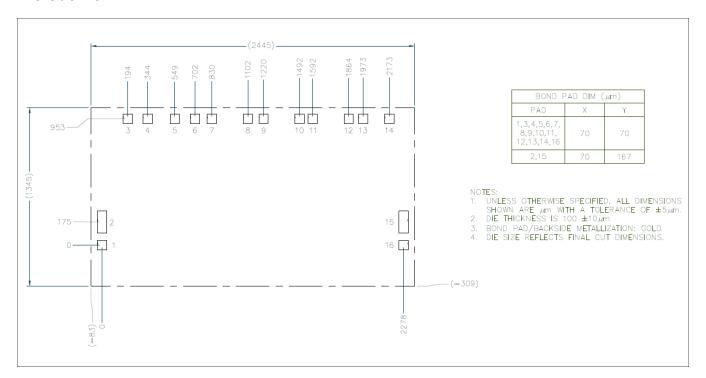

#### Input Return Loss vs. Temp



I\_IP3 vs. BITs and Frequency



#### Output Return Loss vs. Temp






# MAPS-010166-DIE

Rev. V1

#### Die Outline



# Digital Phase Shifter, 6 Bit, 8 - 12 GHz



**MAPS-010166-DIE** 

Rev. V1

## MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.