

MAPC-S1101 Rev. V1

3 x 3 mm AQFN

Features

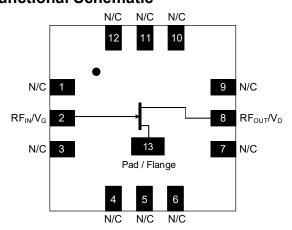
- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for Linear & Saturated Applications
- · Pulsed Operation: 15 W Output Power
- 260°C Reflow Compatible
- 50 V & 28 V Operation
- 100% RF Tested
- RoHS* Compliant
- · End-Use Statement Required

Description

The MAPC-S1101 is a high power GaN on Silicon Carbide HEMT D-mode amplifier suitable for DC - 12 GHz frequency operation. The device supports pulsed and linear operation with peak output power levels of at least 15 W (41.8 dBm) in an air cavity plastic package.

Typical RF Performance:

 Measured under load-pull at 2.5 dB Compression, 100 μs pulse width, 10% duty cycle.


Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
3.0	42.9	18.5	67.3
5.0	5.0 42.9 14.4		65.4
6.0	42.7	12.0	66.6
8.0	41.7	13.8	60.4
9.0	41.6	13.9	57.4
10.0	41.6	12.4	56.4

VDS = 50 V, IDQ = 40 mA, TC = 25°C

Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
3.0	40.0	17.1	65.6
5.0	40.1	13.3	67.3
6.0	40.2	13.6	69.2
8.0	39.4	12.2	60.3
9.0	39.4	12	57.7
10.0	39.3	10.6	58.3

- 1. Load impedance tuned for maximum output power.
- 2. Load impedance tuned for maximum drain efficiency.

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	NC ³	No Connection
2	RF _{IN} / V _G	RF Input / Gate
3 - 7	NC ³	No Connection
8	RF _{OUT} / V _D	RF Output / Drain
9 - 12	NC ³	No Connection
13	Flange ⁴	Ground / Source

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-S1101-AD000	Bulk Quantity
MAPC-S1101-ADTR1	Tape and Reel
MAPC-S1101-ADSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-S1101 Rev. V1

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 40 \text{ mA}$ Note: Performance in MACOM 2.7 - 3.5 GHz Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁵ , 3.5 GHz	G _{SS}	-	18.3	-	dB
Power Gain	Pulsed ⁵ , 3.5 GHz, 2.5 dB Gain Compression	G _{SAT}	-	15.7	-	dB
Saturated Drain Efficiency	Pulsed ⁵ , 3.5 GHz, 2.5 dB Gain Compression	η_{SAT}	1	57.8	-	%
Saturated Output Power	Pulsed ⁵ , 3.5 GHz, 2.5 dB Gain Compression	P _{SAT}	-	41.8	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed ⁵ , 3.5 GHz	ΔG	-	0.014	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ⁵ , 3.5 GHz	ΔP2.5dB	-	0.001	-	dB/°C
Power Gain	Pulsed ⁵ , 3.5 GHz, P _{IN} = 26 dBm	G _P	-	15.8	-	dB
Drain Efficiency	Pulsed ⁵ , 3.5 GHz, P _{IN} = 26 dBm	η	-	57.0	-	%
Input Return Loss	Pulsed ⁵ , 3.5 GHz, P _{IN} = 26 dBm	IRL	-	-6.7	-	dB
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR = 10:1, No Damag		amage	

RF Electrical Specifications: T_A = 25°C, V_{DS} = 50 V, I_{DQ} = 40 mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁵ , 3.5 GHz, 2.5 dB Gain Compression	G _{SAT}	-	14.1	-	dB
Saturated Drain Efficiency	Pulsed ⁵ , 3.5 GHz, 2.5 dB Gain Compression	η_{SAT}	-	54.5	-	%
Saturated Output Power	Pulsed ⁵ , 3.5 GHz, 2.5 dB Gain Compression	P _{SAT}	-	42.3	-	dBm
Power Gain	Pulsed ⁵ , 3.5 GHz, P _{IN} = 26 dBm	G _P	-	15.5	-	dB
Drain Efficiency	Pulsed ⁵ , 3.5 GHz, P _{IN} = 26 dBm	η	-	53.1	-	%
Input Return Loss	Pulsed⁵, 3.5 GHz, P _{IN} = 26 dBm	IRL	-	-20	-	dB

^{5.} Pulse details: 100 µs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 130 V	I _{DLK}	-	-	2.8	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I_{GLK}	-	-	2.8	mA
Gate Threshold Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 2.8 \text{ mA}$	V_T	-	-3.1	-	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 40 \text{ mA}$	V_{GSQ}	-	-2.9	-	V
On Resistance	$V_{GS} = 2 \text{ V}, I_D = 21 \text{ mA}$	R _{ON}	-	1.71	-	Ω
Maximum Drain Current	V _{DS} = 7 V, pulse width 300 μs	I _{D, MAX}	-	3.33	-	Α

MAPC-S1101

Rev. V1

Absolute Maximum Ratings 6,7,8,9,10

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	150 V		
Gate Source Voltage, V _{GS}	-15 to 2 V		
Gate Current, I _G	2.8 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C		
Absolute Maximum Channel Temperature	+250°C		

Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics¹¹

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	9	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(IR)$	7.2	°C/W

^{11.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

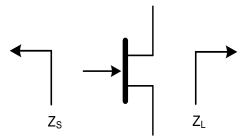
Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM does not recommend sustained operation near these survivability limits.

Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 2 x 10⁶ hours.
 Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 2 x 10⁶ hours.
 MTTF may be estimated by the expression MTTF (hours) = A e ^[B+C/(T+273)] where *T* is the channel temperature in degrees Celsius, A = 1.03, B = -33.74, and C = 24.137.

MAPC-S1101


Rev. V1

Pulsed⁵ Load-Pull Performance¹⁴ at 50 V Reference Plane at Device Leads

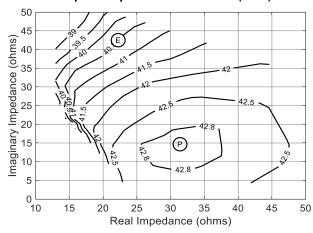
		Maximum Output Power						
		V _{DS} = 50 V, I _{DQ} = 40 mA, T _C = 25°C, P2.5dB						
Frequency (GHz)	Z _{source} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)	
3.0	1.8 + j2.1	31.4 + j14.7	18.4	42.9	19.5	55.8	61.3	
5.0	2.5 - j8.9	22.2 + j8.0	13.8	42.9	19.5	52.7	29.2	
6.0	1.7 - j14.5	16.9 + j4.6	11.9	42.7	18.6	55.1	14.3	
8.0	2.4 - j25.9	14.3 + j2.2	12.5	41.7	15.0	48.7	-15.3	
9.0	2.2 - j33.5	9.3 - j6.9	12.3	41.6	14.8	48.7	-31.7	
10.0	2.2 - j38	8 - j10.3	11.0	41.6	14.8	46.6	-42.4	

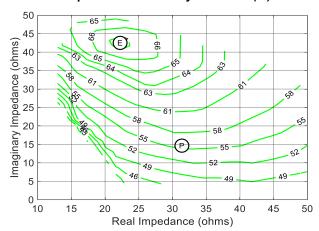
		Maximum Drain Efficiency							
			V _{DS} = 50 V, I _{DQ} = 40 mA, T _C = 25°C, P2.5dB						
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹³ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)		
3.0	1.1 + j0.4	22.2 + j42.5	18.5	40.5	11.2	67.3	54.1		
5.0	1.9 - j9.5	10.2 + j19.5	14.4	41.0	12.6	65.4	23.9		
6.0	1.4 - j14.6	6.5 + j13.1	12.0	40.3	10.7	66.6	6		
8.0	1.6 - j25.9	4.6 + j2.7	13.8	38.8	7.6	60.4	-21.5		
9.0	1.3 - j33.6	3.7 - j4.9	13.9	39.4	8.7	57.4	-38.1		
10.0	1.5 - j37.9	3.5 - j8.4	12.4	40.0	10	56.4	-47.7		

Impedance Reference

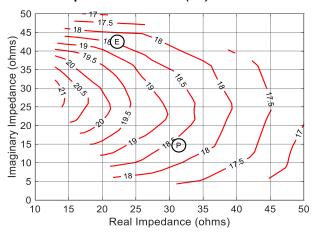
Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

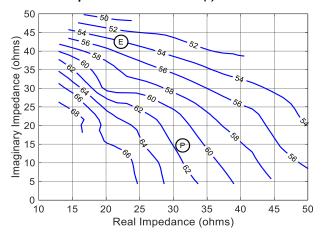
- 12. Load Impedance for optimum output power.
- 13. Load Impedance for optimum efficiency.
 14. Fundamental optimization only. No harmonic control on source or load.

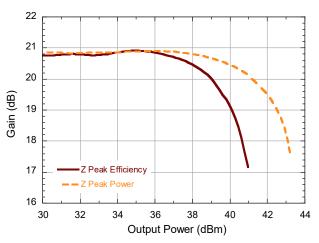

 Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

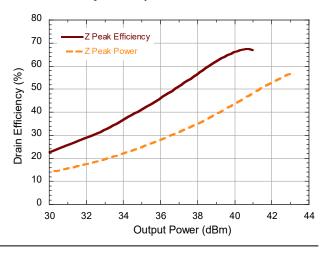

MAPC-S1101 Rev. V1

Pulsed⁵ Load-Pull Performance¹⁴ @ 3.0 GHz


P2.5dB Loadpull Output Power Contours (dBm)

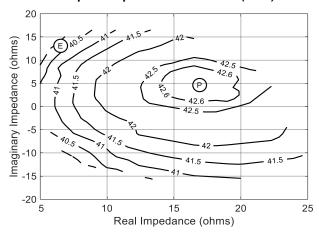

P2.5dB Loadpull Drain Efficiency Contours (%)

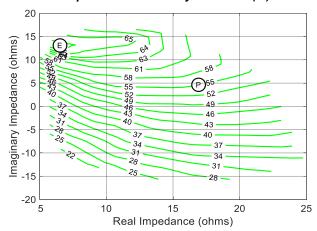

P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

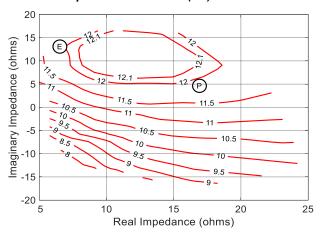
Gain vs. Output Power

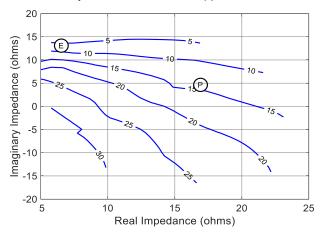
Drain Efficiency vs. Output Power

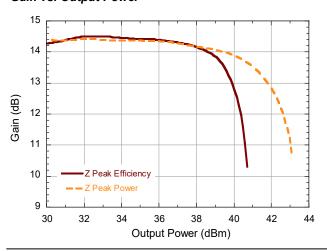


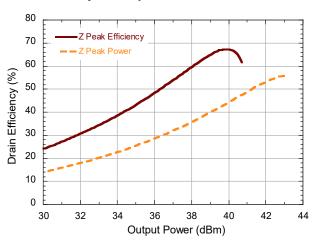

MAPC-S1101 Rev. V1

Pulsed⁵ Load-Pull Performance¹⁴ @ 6.0 GHz


P2.5dB Loadpull Output Power Contours (dBm)

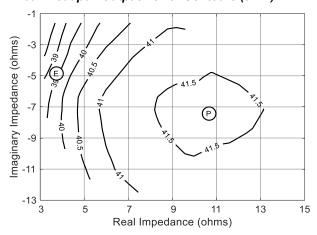

P2.5dB Loadpull Drain Efficiency Contours (%)

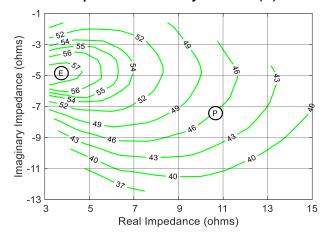

P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

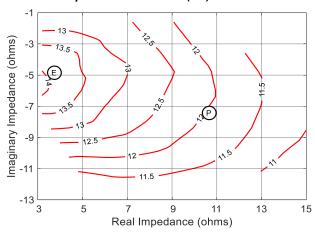
Gain vs. Output Power

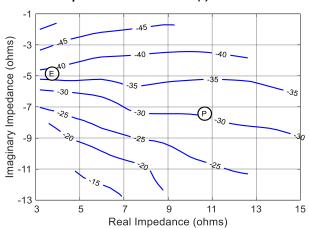
Drain Efficiency vs. Output Power

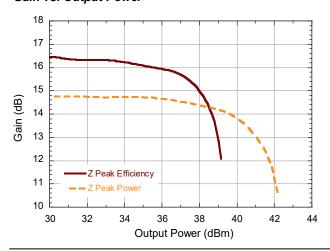


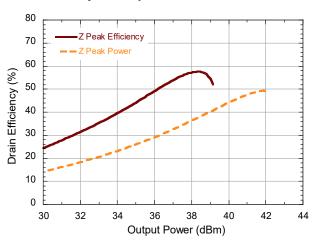

MAPC-S1101 Rev. V1

Pulsed⁵ Load-Pull Performance¹⁴ @ 9.0 GHz


P2.5dB Loadpull Output Power Contours (dBm)

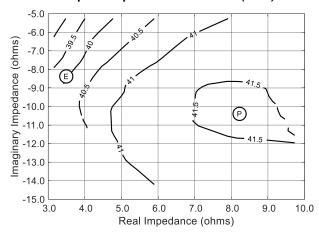

P2.5dB Loadpull Drain Efficiency Contours (%)

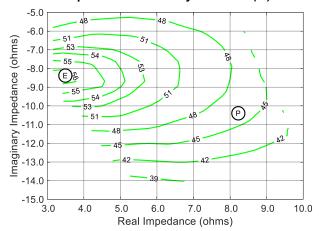

P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

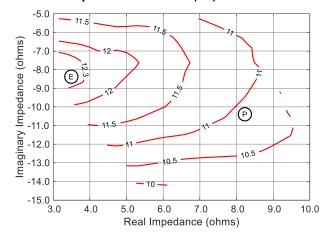
Gain vs. Output Power

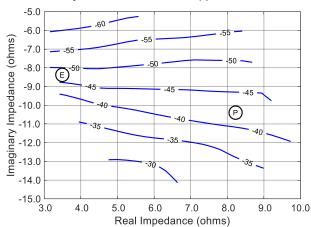
Drain Efficiency vs. Output Power

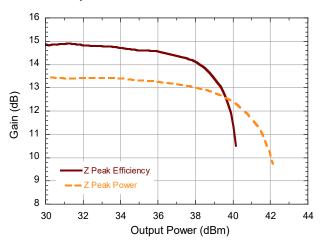


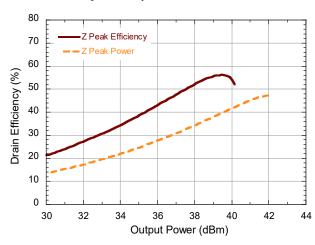

MAPC-S1101 Rev. V1

Pulsed⁵ Load-Pull Performance¹⁴ @ 10.0 GHz


P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Drain Efficiency Contours (%)

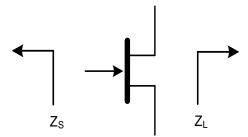

P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

Gain vs. Output Power

Drain Efficiency vs. Output Power

MAPC-S1101


Rev. V1

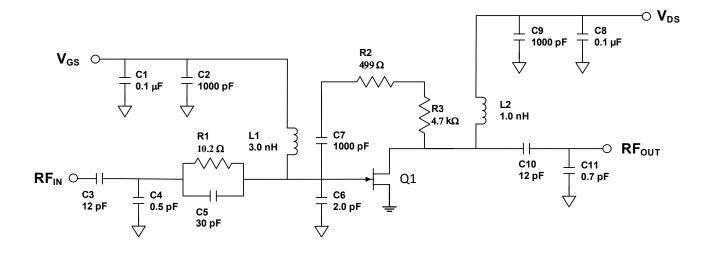
Pulsed⁵ Load-Pull Performance¹⁴ at 28 V Reference Plane at Device Leads

		Maximum Output Power							
		V _{DS} = 28 V, I _{DQ} = 40 mA, T _C = 25°C, P2.5dB							
Frequency (GHz)	Z _{source} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η₀ (%)	AM/PM (°)		
3.0	1.9 + j2.2	25.1 + j2.7	16.8	40.0	10	56.3	62.6		
5.0	2.3 - j8.9	16.7 - j1.2	12.6	40.1	10.2	55.7	341		
6.0	2.0 - j14.6	16.4 + j2.5	12.5	40.2	10.5	59.6	16.5		
8.0	2.5 - j25.9	13.8 - j11.1	10.8	39.4	8.7	50.9	-11.3		
9.0	2.5 - j33.5	11.5 - j14.3	10	39.4	8.7	47.5	-24.1		
10.0	2.4 - j37.8	8.6 - j14.7	9.3	39.3	8.5	50.4	-37		

		Maximum Drain Efficiency					
		V _{DS} = 28 V, I _{DQ} = 40 mA, T _C = 25°C, P2.5dB					
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹³ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)
3.0	1.3 + j0.9	22.6 + j24.7	17.1	37.9	6.2	65.6	52.8
5.0	1.5 - j9.6	9.7 + j10.7	13.3	37.9	6.2	67.3	21.2
6.0	1.6 - j14.8	10.1 + j5.0	13.6	38.9	7.8	69.2	6.7
8.0	1.8 - j26.4	6.2 - j4.9	12.2	37.1	5.1	60.3	-21.7
9.0	1.7 - j33.5	4.6 - j10.4	12	37.4	5.5	57.7	-33.7
10.0	1.7 - j37.8	4.0 - j13.8	10.6	38.1	6.5	58.3	-41.2

Impedance Reference

Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.


- 12. Load Impedance for optimum output power.
- 13. Load Impedance for optimum efficiency.
 14. Fundamental optimization only. No harmonic control on source or load.

 Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

MAPC-S1101

Rev. V1

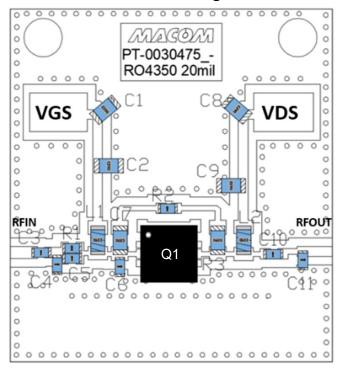
Evaluation Test Fixture and Recommended Tuning Solution 2.7 - 3.5 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

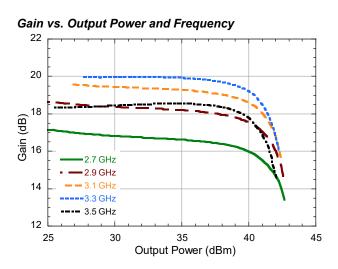
- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

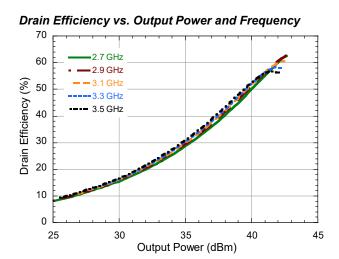

Turning the device OFF

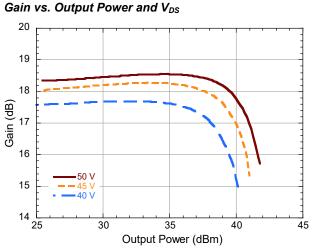
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_{P} pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

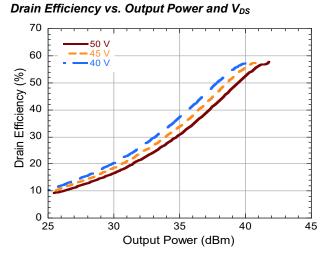
MAPC-S1101 Rev. V1

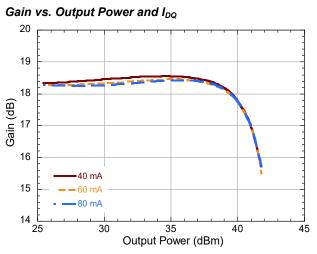
Evaluation Test Fixture and Recommended Tuning Solution 2.7 - 3.5 GHz

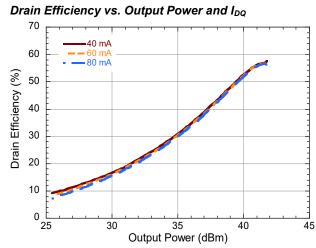


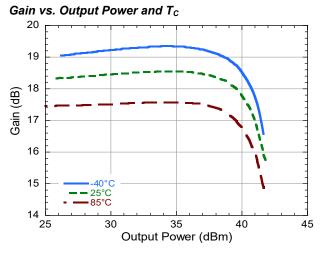

Reference Designator	Value Tolerance Manufacturer Part Number		Part Number		
C1, C8	0.1 μF	+/- 10 %	Murata	GRM188R72A104KA35J	
C2, C7, C9	1000 pF	+/- 10 %	Murata	GCJ188R71H102KA01D	
C3, C10	12 pF	+/- 5 %	PPI	0402N120JW500	
C4	0.5 pF	+/- 0.1 pF	PPI	0402N0R5BW201	
C5	30 pF	+/- 5 %	PPI	0402N300JW500	
C6	2.0 pF	+/- 0.1 pF	PPI	0402N2R0BW201	
C11	0.7 pF	+/- 0.1 pF	PPI	0402N0R7BW201	
R1	10.2 Ω	+/- 1 %	Viking	CR-02FL610R2	
R2	499 Ω	+/- 1 %	Viking	CR-02FL6499R	
R3	4.7 kΩ	+/- 5 %	Vishay	CRCW06034K70JNEAC	
L1	3.0 nH	+/- 5 %	CoilCraft	0603CT-3N0XJR	
L2	1 nH	+/- 5 %	CoilCraft	0603CT-1N0XJR	
Q1	MACOM GaN Power Amplifier MAPC-S1101		MAPC-S1101		
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

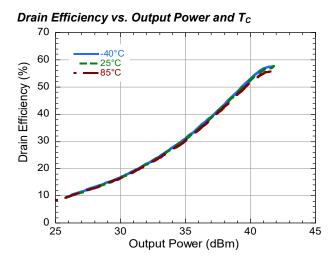


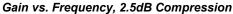

MAPC-S1101 Rev. V1

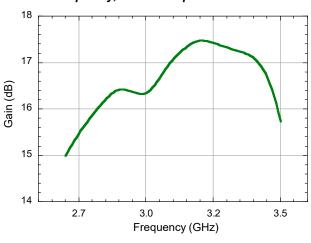

Typical Performance Curves as Measured in the 2.7 - 3.5 GHz Evaluation Test Fixture: Pulsed⁵ 3.5 GHz, V_{DS} = 50 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)

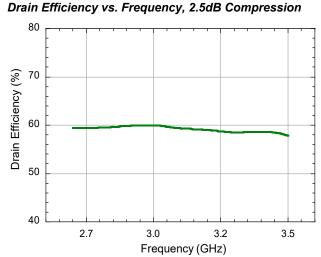


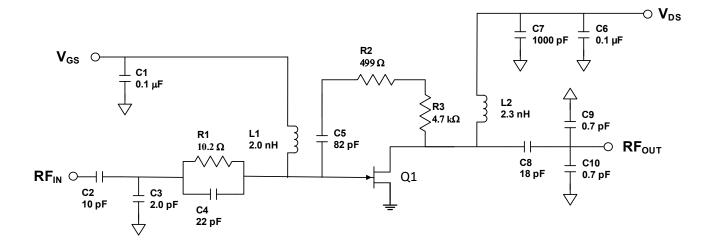







MAPC-S1101 Rev. V1


Typical Performance Curves as Measured in the 2.7 - 3.5 GHz Evaluation Test Fixture: Pulsed⁵ 3.5 GHz, V_{DS} = 50 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)



MAPC-S1101 Rev. V1

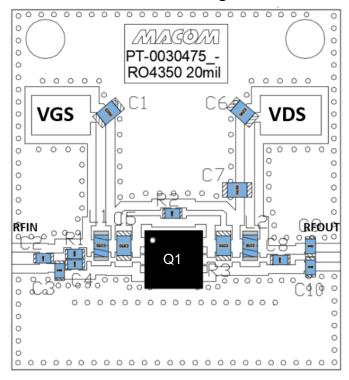
Evaluation Test Fixture and Recommended Tuning Solution 2.2 - 2.6 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

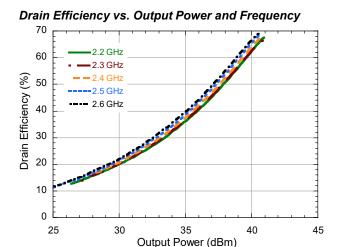

Turning the device OFF

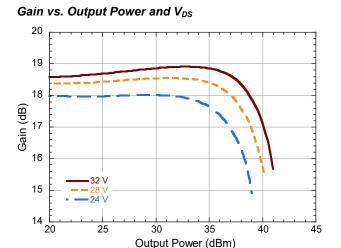
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

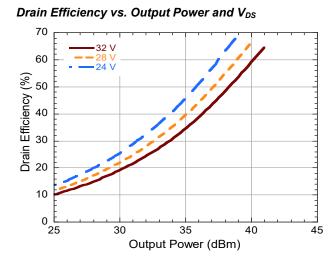
MAPC-S1101 Rev. V1

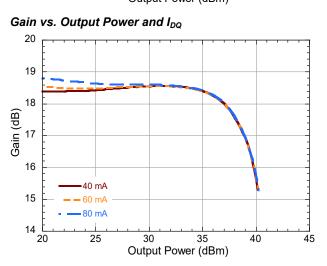
Evaluation Test Fixture and Recommended Tuning Solution 2.2 - 2.6 GHz

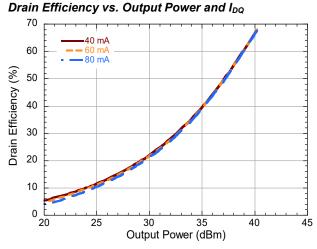
Reference Designator	Value	Tolerance	Manufacturer	cturer Part Number	
C1, C6	0.1 μF	+/- 10 %	Murata	GRM188R72A104KA35J	
C2	10 pF	+/- 5 %	PPI	0402N100JW500	
C3	2.0 pF	+/- 0.1 pF	PPI	0402N2R0BW201	
C4	22 pF	+/- 5 %	PPI	0402N220JW500	
C5	82 pF	+/- 5 %	PPI	0402N820JW500	
C7	1000 pF	+/- 10 %	Murata	GCJ188R71H102KA01D	
C8	18 pF	+/- 5 %	PPI	0402N180JW500	
C9, C10	0.7 pF	+/- 0.1 pF	PPI	0402N0R7BW201	
R1	10.2 Ω	+/- 1 %	Viking	CR-02FL610R2	
R2	499 Ω	+/- 1 %	Viking	CR-02FL6499R	
R3	4.7 kΩ	+/- 5 %	Vishay	CRCW06034K70JNEAC	
L1	2.0 nH	+/- 5 %	CoilCraft	0603CT-2N0XJR	
L2	2.3 nH	+/- 5 %	CoilCraft	0603CT-2N3XJR	
Q1	MACOM GaN Power Amplifier MAPC-S1101		MAPC-S1101		
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

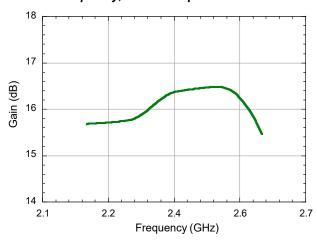


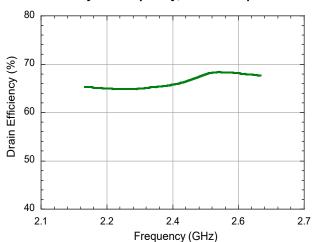

MAPC-S1101 Rev. V1


Typical Performance Curves as Measured in the 2.2 - 2.6 GHz Evaluation Test Fixture: Pulsed⁵ 2.6 GHz, V_{DS} = 28 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)

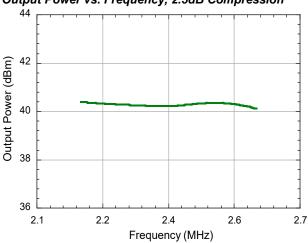

Gain vs. Output Power and Frequency


22
20
20
18
18
22
20
2.2 GHz
2.2 GHz
2.2 GHz
2.2 GHz
2.2 GHz
2.2 GHz
0 Output Power (dBm)

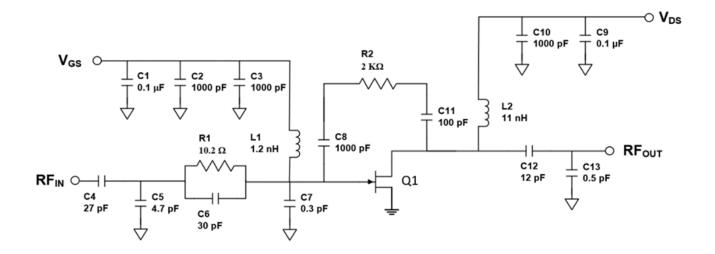



MAPC-S1101 Rev. V1

Typical Performance Curves as Measured in the 2.2 - 2.6 GHz Evaluation Test Fixture: Pulsed⁵ 2.6 GHz, V_{DS} = 28 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)


Gain vs. Frequency, 2.5dB Compression

Drain Efficiency vs. Frequency, 2.5dB Compression



MAPC-S1101

Rev. V1

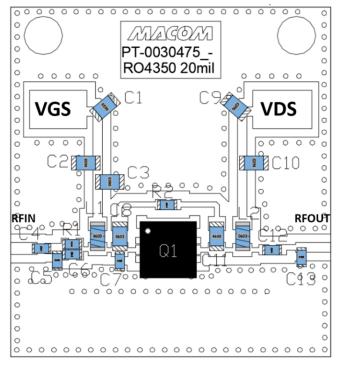
Evaluation Test Fixture and Recommended Tuning Solution 900 - 950 MHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

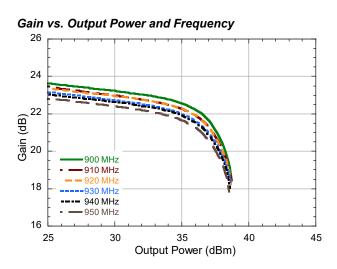
- 1. Set V_{GS} to pinch-off (V_P) .
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

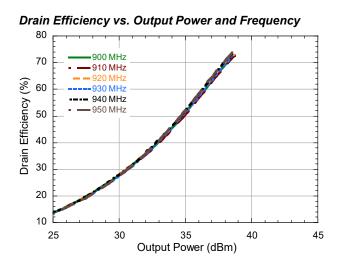

Turning the device OFF

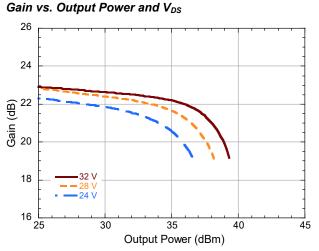
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

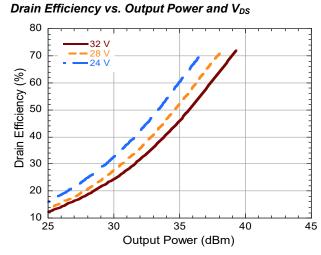
MAPC-S1101 Rev. V1

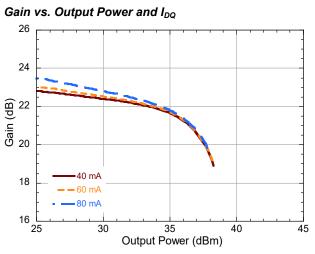
Evaluation Test Fixture and Recommended Tuning Solution 900 - 950 MHz

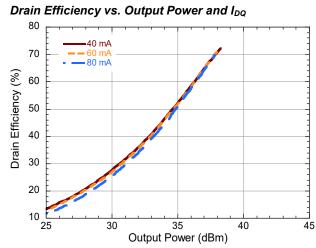


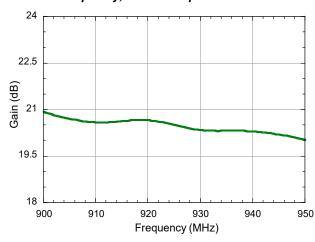

Reference Designator	Value	Value Tolerance Manufacturer Part Number		Part Number	
C1, C9	0.1 μF	+/- 10 %	Murata	GRM188R72A104KA35J	
C2, C3, C8, C10	1000 pF	+/- 10 %	Murata	GCJ188R71H102KA01D	
C4	27 pF	+/- 5 %	PPI	0402N270JW500	
C5	4.7 pF	+/- 0.1 pF	PPI	0402N4R7BW201	
C6	30 pF	+/- 5 %	PPI	0402N300JW500	
C7	0.3 pF	+/- 0.1 pF	PPI	0402N0R3BW201	
C11	100 pF	+/- 5 %	PPI	0603N101JW251	
C12	12 pF	+/- 5 %	PPI	0402N120JW500	
C13	0.5 pF	+/- 0.1 pF	PPI	0402N0R5BW201	
R1	10.2 Ω	+/- 1 %	Viking	CR-02FL610R2	
R2	2.0 kΩ	+/- 1 %	Viking	CR-02FL62K	
L1	1.2 nH	+/- 5 %	CoilCraft	0603CT-1N2XJR	
L2	11 nH	+/- 5 %	CoilCraft	0603CT-11NXJR	
Q1	MACOM GaN Power Amplifier MAPC-S1101		MAPC-S1101		
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

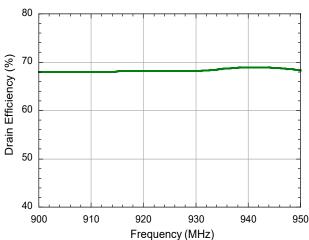



MAPC-S1101 Rev. V1

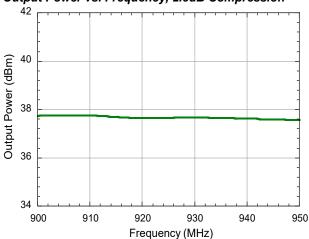

Typical Performance Curves as Measured in the 900 - 950 MHz Evaluation Test Fixture: Pulsed 5 950 MHz, V_{DS} = 28 V, I_{DQ} = 40 mA, T_C = 25°C (Unless Otherwise Noted)



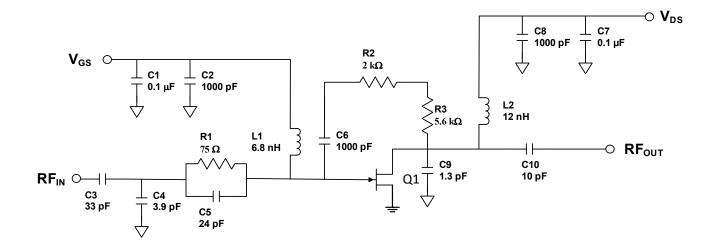



MAPC-S1101 Rev. V1

Typical Performance Curves as Measured in the 900 - 950 MHz Evaluation Test Fixture: Pulsed 5 950 MHz, V_{DS} = 28 V, I_{DQ} = 40 mA, T_C = 25°C (Unless Otherwise Noted)


Gain vs. Frequency, 2.5dB Compression

Drain Efficiency vs. Frequency, 2.5dB Compression


Output Power vs. Frequency, 2.5dB Compression

MAPC-S1101 Rev. V1

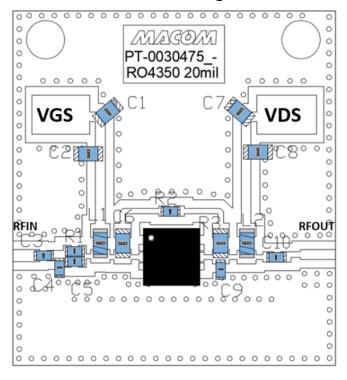
Evaluation Test Fixture and Recommended Tuning Solution 450 - 512 MHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

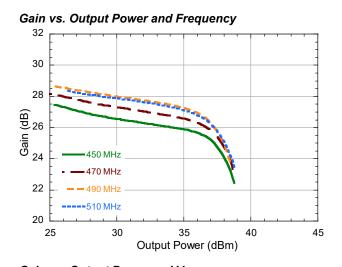
- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

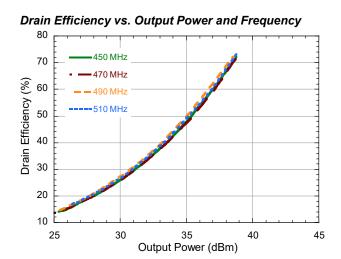

Turning the device OFF

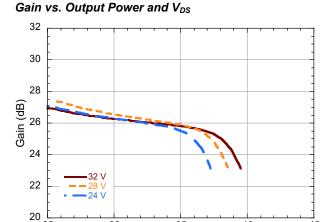
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

MAPC-S1101 Rev. V1

Evaluation Test Fixture and Recommended Tuning Solution 450 - 512 MHz

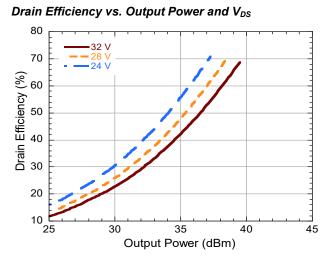


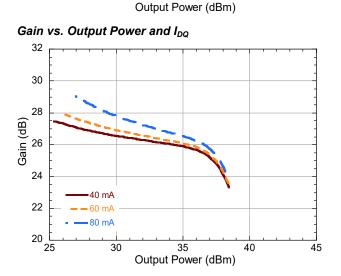

Reference Designator	Value	Value Tolerance Manufacturer Part Number		Part Number	
C1, C7	0.1 μF	+/- 10 %	Murata	GRM188R72A104KA35J	
C2, C6, C8	1000 pF	+/- 10 %	Murata	GCJ188R71H102KA01D	
C3	33 pF	+/- 5 %	PPI	0402N330JW500	
C4	3.9 pF	+/- 0.1 pF	PPI	0402N3R9BW201	
C5	24 pF	+/- 5 %	PPI	0402N240JW500	
C9	1.3 pF	+/- 0.1 pF	PPI	0402N1R3BW201	
C10	10 pF	+/- 5 %	PPI	0402N100JW500	
R1	75 Ω	+/- 1 %	Viking	CR-02FL675	
R2	2.0 kΩ	+/- 1 %	Viking	CR-02FL62K	
R3	5.6 kΩ	+/- 5 %	Vishay	CRCW06035K60JNEAC	
L1	6.8 nH	+/- 5 %	CoilCraft	0603CT-6N8XJR	
L2	12 nH	+/- 5 %	CoilCraft	0603CT-12NXJR	
Q1	MACOM GaN Power Amplifier MAPC-S1101		MAPC-S1101		
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

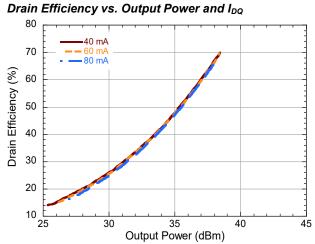


MAPC-S1101 Rev. V1

Typical Performance Curves as Measured in the 450 - 512 MHz Evaluation Test Fixture: Pulsed⁵ 450 MHz, V_{DS} = 28 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)

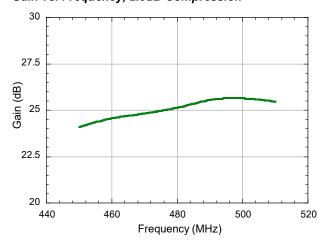


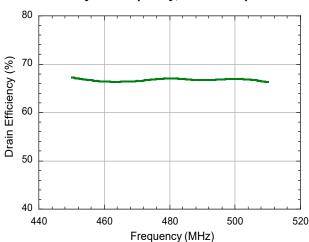

35


40

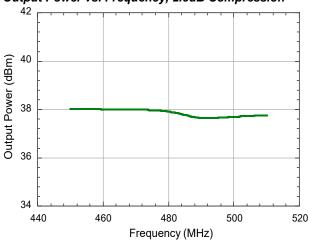
45

30

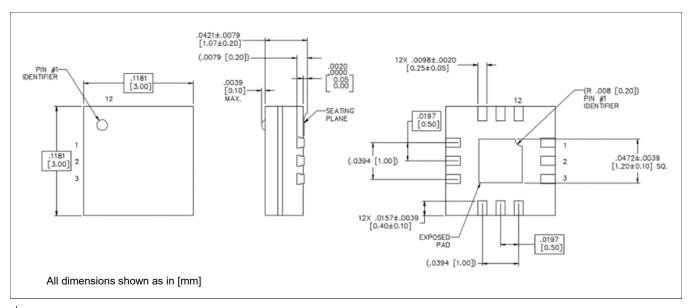



MAPC-S1101 Rev. V1

Typical Performance Curves as Measured in the 450 - 512 MHz Evaluation Test Fixture: Pulsed⁵ 450 MHz, V_{DS} = 28 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)


Gain vs. Frequency, 2.5dB Compression

Drain Efficiency vs. Frequency, 2.5dB Compression



MAPC-S1101 Rev. V1

Lead-Free 3 x 3 mm AQFN Package Dimensions[†]

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is NiPdAu.

GaN Amplifier 50 V, 15 W DC - 12 GHz

MACOM PURE CARBIDE

MAPC-S1101

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.