High Power RF GaN Amplifier 60 W, 50 V, 4900 - 5000 MHz

MAPC-C50060-AD

Rev. V3

MACOM PURE CARBIDE.

Features

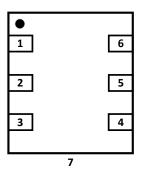
- GaN on SiC HEMT Technology
- Designed for Driver Application
- Average Output Power: 34.4 dBm
- Peak Output Power: 60 W
- Input Pre-matched Device
- Low Thermal Resistance
- 100% DC & RF Tested
- RoHS* Compliant

Applications

- Point-to-Point
- Infrastructure

Description

The MAPC-C50060-AD is a GaN on Silicon Carbide HEMT Amplifier designed for Driver applications. The device operates as Class-AB amplifier in the application fixture, and it is optimized for the frequency band of 4900 to 5000 MHz. Product is housed in an over-molded 7.0 x 6.5 mm DFN package.


Typical Driver Performance:

 $V_{DS} = 50 \text{ V}, I_{DQtop} = 36 \text{ mA}, I_{DQbot} = 36 \text{ mA}, V_{GSpk} = -2.855 \text{ V}, P_{OUT} = 34.4 \text{ dBm}, T_A = 25^{\circ}\text{C}$

Frequency (MHz)	Gain (dB)	Efficiency (%)	Output PAR (dB)	ACPR (dBc)
4900	15.19	16.71	9.78	-43.93
4950	15.08	17.19	9.84	-43.72
5000	14.92	17.79	9.64	-43.99

Note: Performance in MACOM Driver Application Fixture. Single Carrier- W-CDMA Channel Bandwidth 100 MHz, PAR 10 dB @ 0.01% CCDF.

Pin Configuration

Pin#	Pin Name Function		
1	RF _{IN} / V _{G1}	RF Input / Gate (Top)	
2, 5	N/C	No Connection	
3	RF _{IN} / V _{G2}	RF Input / Gate (Bottom)	
4	RF _{OUT} / V _{D2}	RF Output / Drain (Bottom)	
6	RF _{OUT} / V _{D1}	RF Output / Drain (Top)	
7	Flange ²	Ground / Source	

The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-C50060-AD000	Bulk Quantity
MAPC-C50060-ADTR1	Tape and Reel ²
MAPC-C50060-ADSB1	Sample Board, 4900 - 5000 MHz

2. See application note AN-0004525 for Tape & Reel information.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

High Power RF GaN Amplifier 60 W, 50 V, 4900 - 5000 MHz

MACOM PURE CARBIDE

MAPC-C50060-AD

Rev. V3

RF Electrical Characterization: in Application Fixture

 $T_A = 25^{\circ}\text{C}$, $V_{DS} = 50 \text{ V}$, $I_{DQtop} = 36 \text{ mA}$, $I_{DQbot} = 36 \text{ mA}$, $V_{GStop} = -2.87 \text{ V}$, $V_{GSbot} = -2.87 \text{ V}$ Performance in MACOM Driver Application Fixture. Single Carrier- W-CDMA Channel Bandwidth 3.84 MHz, PAR 10 dB @ 0.01% CCDF

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	4950 MHz, P _{OUT} = 34.4 dBm	Gp	_	15.08	_	dB
Drain Efficiency	4950 MHz, P _{OUT} = 34.4 dBm	η	_	17.19	_	%
Output CCDF @ 0.01%	4950 MHz, P _{OUT} = 34.4 dBm	PAR	_	9.84	_	dB
Adjacent Channel Power	4950 MHz, P _{OUT} = 34.4 dBm	ACP	_	-43.72	_	dBc
Input Return Loss	4950 MHz, P _{OUT} = 34.4 dBm	IRL	_	-16.24	_	dB
Gain Flatness	4950 MHz, P _{OUT} = 34.4 dBm	G _F	_	0.26		dB
Gain Variation (-40°C to +105°C)	4950 MHz, P _{OUT} = 34.4 dBm	ΔG	_	0.02	_	dB/°C
Power Variation (-40°C to +105°C)	4950 MHz	ΔP_{3dB}	_	0.001	_	dB/°C
Ruggedness: Output Mismatch	All Phase Angles	Ψ	VSWR = 4:1, No Device Da		amage	

RF Electrical Test Specifications: in Production Test Fixture

TA = 25°C, VDS = 48 \dot{V} , I_{DQtop} = 36 mA, I_{DQbot} = 36 mA, V_{GStop} = -2.9 V, V_{GSbot} = -2.9 V Performance in MACOM Doherty Production Test Fixture. LTE 20 MHz, PAR 10dB @ 0.01% CCDF.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	3800 MHz, P _{OUT} = 34.4 dBm	Gp	6	7.4	_	dB
Drain Efficiency	3800 MHz, P _{OUT} = 34.4 dBm	η	9	10.4	_	%
Output CCDF @ 0.01%	3800 MHz, P _{OUT} = 34.4 dBm	PAR	7.5	8.3	_	dB
Adjacent Channel Power	3800 MHz, P _{OUT} = 34.4 dBm	ACP	_	-38.5	-33	dBc

MACOM PURE CARBIDE.

MAPC-C50060-AD Rev. V3

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
	Top Amplifier					
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V	I _{DLK}	_		0.6	mA
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 150 V	I _{DLK}		_	1.4	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 50 V	I _{GLK}	-0.9		_	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 150 V	I _{GLK}	-1.1	_	_	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_{D} = 3.6 \text{mA}$	V _T	-3.8	-2.7	-2.1	V
	Bottom Amplifier					
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$	I _{DLK}		_	0.6	mA
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 150 V	I _{DLK}		_	1.4	mA
Gate-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 50 \text{ V}$	I _{GLK}	-0.9		_	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 150 V	I _{GLK}	-1.1	_	_	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_{D} = 3.6 \text{mA}$	V _T	-3.8	-2.7	-2.1	V

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage		V	_	_	50
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 36 mA	V	-3.6	-2.81	-2.1

ESD Characteristics

Parameter	Class	Standard
Human Body Model (HBM)	1A	JEDEC JESD22 A114-D
Charge Device Model (CDM)	C2	JEDEC JESD22 C101-C

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	°C

High Power RF GaN Amplifier 60 W, 50 V, 4900 - 5000 MHz

MACOM PURE CARBIDE.

MAPC-C50060-AD

Rev. V3

Absolute Maximum Ratings^{5,6,7,8.9}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	125 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current (Top), I _G	22.1 mA
Gate Current (Bot), I _G	22.1 mA
Storage Temperature Range	-65°C to +150°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+225°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 2.51 x 10⁶ hours. Operating at nominal conditions with $T_{CH} \le 225^{\circ}C$ will ensure MTTF > 2.51 x 10⁶ hours. MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where T is the channel temperature in degrees Celsius, A = 1.93, B = -45.31, and C = 29,585.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Infrared Measurement of Die Surface Temperature	$V_{DS} = 50 \text{ V}$ $T_{C} = 125^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(IR)$	8.32	°C/W

^{10.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired guiescent drain current
- 5. Apply RF

Bias OFF

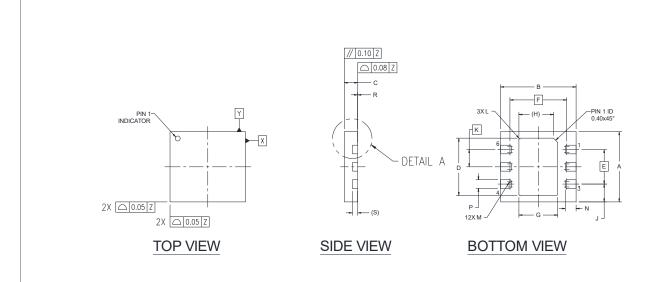
- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- Turn-off drain voltage
- 4. Turn-off gate voltage

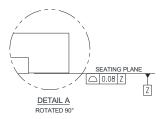
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.




MACOM PURE CARBIDE

MAPC-C50060-AD

Rev. V3

7.0 x 6.5 mm 6-Lead Package Dimensions

DIM		INCHES		MILLIMETERS		
DIIVI	MIN	TYP	MAX	MIN	TYP	MAX
Α	0.254	0.256	0.258	6.45	6.5	6.55
В	0.274	0.276	0.278	6.95	7	7.05
С	0.045	0.049	0.053	1.15	1.25	1.35
D	0.205	0.209	0.213	5.21	5.31	5.41
Е	-	0.126	-	-	3.2	-
F	-	0.207	-	-	5.26	-
G	0.138	0.142	0.146	3.5	3.6	3.7
Н	-	0.126	-	-	3.2	-
J	0.063	0.065	0.067	1.6	1.65	1.7
K	-	0.063	-	-	1.6	-
L	-	0.004	0.008	-	0.1	0.2
М	-	0.005	0.016	-	0.13	0.4
N	0.035	0.039	0.043	0.9	1	1.1
Р	0.03	0.031	0.033	0.75	0.8	0.85
R	0	0.001	0.002	0	0.02	0.05
S	-	0.02	-	-	0.5	-
† Inte	rpret dime	nsions and	d tolerance	s per ASN	/IE Y14.5N	I-1994.

High Power RF GaN Amplifier 60 W, 50 V, 4900 - 5000 MHz

MACOM PURE CARBIDE.

MAPC-C50060-AD

Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.