

MAPC-A4032

Rev. V2

Features

Output Power: 500 W
Large Signal Gain: 12 dB
Drain Efficiency: 55%
Internally Matched: 50 Ω
High Temperature Operation

RoHS* Compliant

Applications

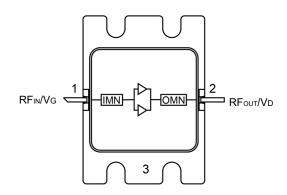
· Civil & Military Pulsed Radar Amplifiers

Description

The MAPC-A4032 is a Gallium Nitride (GaN) amplifier designed specifically with high efficiency and high power for the 2.75 - 3.75 GHz S-Band radar band.

The amplifier is matched to 50 Ω on the input and 50 Ω on the output. At the core of MAPC-A4032 is the high power density 65 V GaN-on-Silicon Carbide (SiC) manufacturing process. The amplifier is supplied in a ceramic/metal flange package of type AC-587BH-2

Typical RF Performance:


Measured in Evaluation Test Fixture at P_{IN} = 46 dBm, 100 µs pulse width and 10% Duty Cycle.

Frequency (GHz)	Output Power (dBm)	Power Gain (dB)	η _D (%)
2.75	56.6	10.6	33.3
2.9	58.8	12.9	51.4
3.3	58.5	12.5	53.4
3.5	58.1	12.1	56.1
3.75	57.7	11.7	57.9

AC-587BH-2

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	RF _{IN} / V _G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	Flange ¹	Ground / Source

The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	MOQ Increment
MAPC-A4032-AB000	Bulk
MAPC-A4032-ABSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A4032

Rev. V2

RF Electrical Characteristics: Freq. = 2.75 - 3.75 GHz, T_C = 25°C, V_{DS} = 65 V, I_{DQ} = 500 mA, Pulse Width = 100 μ s, Duty Cycle = 10%

Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output Power	Pulsed, P _{IN} = 46 dBm	P _{OUT}		58.5		dBm
Drain Efficiency	Pulsed, P _{IN} = 46 dBm	DE		53.5		%
Large Signal Gain	Pulsed, P _{IN} = 46 dBm	G _P	_	12.5	_	dB
Small Signal Gain	CW, P _{IN} = -30 dBm	S21		13	_	dB
Input Return Loss	CW, P _{IN} = -30 dBm	S11		-7	_	dB
Output Return Loss	CW, P _{IN} = -30 dBm	S22		-4	_	dB
Output Mismatch Stress	$V_{DD} = 65 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$	Ψ	VSWR =10:1, No Device Dama		amage	

RF Electrical Specifications²: P_{IN} = 46 dBm, T_A = +25°C, V_{DS} = 65 V, I_{DQ} = 500 mA, Pulse Width 100 μ s, 10% Duty Cycle

Parameter	Conditions	Units	Min.	Тур.	Max.
Output Power	2.90 GHz 3.30 GHz 3.50 GHz 3.75 GHz	W	560 560 500 500	675 640 615 600	_
Power Gain	2.90 GHz 3.30 GHz 3.50 GHz 3.75 GHz	dB	11.4 11.4 11.0 11.0	12.3 12.1 11.9 11.8	_
Drain Efficiency	2.90 GHz 3.30 GHz 3.50 GHz 3.75 GHz	%	40 45 50 50	46 49 55 57	_

^{2.} Final testing and screening for all amplifier sales is performed using the MAPC-A4032 production test fixture.

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{DLK}			11.62	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{GLK}	-11.62	_	_	mA
Gate Threshold Voltage	V _{DS} = 10 V, I _D = 83.6 mA	V _T	-3.8	-3.1	-2.3	V
Gate Quiescent Voltage	$V_{DS} = 65 \text{ V}, I_{D} = 500 \text{ mA}$	V_{GSQ}		-2.75	_	V

MAPC-A4032

Rev. V2

Thermal Characteristics

Parameter	Symbol	Test Conditions	Units	Rating
Operating Junction Temperature	TJ	Pulse Width = 100 μs , Duty Cycle = 10%,	°C	136
Thermal Resistance, Junction to Case	R _{eJC}	$P_{DISS} = 427 \text{ W}, T_C = 85^{\circ}\text{C}$	°C/W	0.12

Parameter	Symbol	Test Conditions	Units	Rating
Operating Junction Temperature	TJ	CW, P _{DISS} = 200 W, T _C = 85°C	Ô	185
Thermal Resistance, Junction to Case	R _{0JC}	CVV, FDISS - 200 VV, 10 - 03 C	°C/W	0.5

Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum
Drain-Source Voltage	195 V
Gate Voltage	-10, +2 V
DC Drain Current	14 A
Gate Current	80 mA
Input Power	48 dBm
Storage Temperature	-65°C to +150°C
Mounting Temperature	+245°C for 30 seconds
Junction Temperature ⁵	+225°C
Operating Temperature	-40°C to +125°C

^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

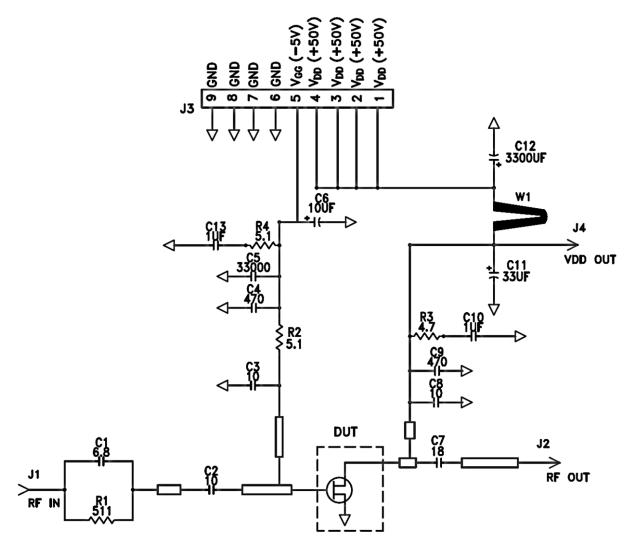
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 3A and CDM Class C3 devices.

MACOM does not recommend sustained operation near these survivability limits.


^{5.} Operating at nominal conditions with $T_J \le +225$ C will ensure MTTF $\ge 1 \times 10^6$ hours.

MAPC-A4032

Rev. V2

Application Circuit Schematic

Description

Parts measured on evaluation board (30-mil thick TACONIC RF-35P, 2oz Copper). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

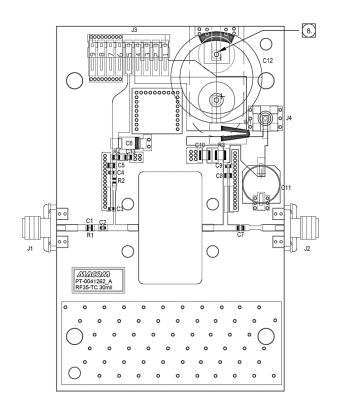
Biasing Sequence

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage


4

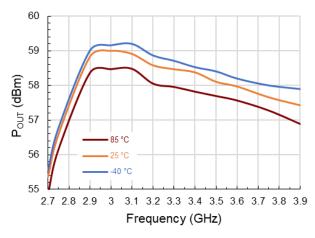
MAPC-A4032

Rev. V2

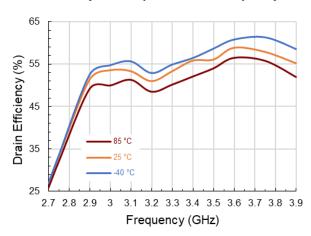
Assembly Drawing

Assembly Parts List

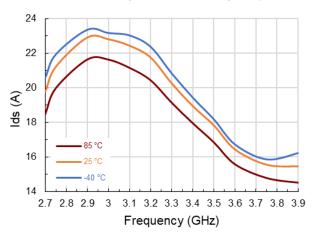
Ref Des	Description	Qty
C1	CAP, 6.8pF, +/- 0.25 pF, 0603, ATC	1
C2,C8	CAP, 10pF, +/- 1%, 250V, 0805, ATC600F	2
С3	CAP, 10.0pF, +/-5%, 0603, ATC	1
C4,C9	CAP, 470PF, 5%,100V, 0603	2
C5	CAP,33000PF, 0805,100V, X7R	1
C6	CAP 10UF 16V TANTALUM, 2312	1
C7	CAP, 18pF, +/- 0.25 pF, 250V, 0805, ATC600F	1
C10	CAP, 1.0UF, 100V, +/-10%, X7R, 1210	1
R3	RES, 4.7 OHM, 1%, 1/4W, 1206	1
C13	CAP, 1UF, 0805, 100V, X7S	1
C11	CAP, 33 UF, 20%, G CASE	1
C12	CAP, 3300 UF, +/-20%, 100V, ELECTROLYTIC, VR, RADIAL	1
R1	RES,1/16W,0603,1%,511 OHMS	1
R2,R4	RES, 1/16W, 0603, 1%, 5.1 Ohms	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1	WIRE ASSEMBLY, 4.2", 18 AWG, TEST FIXTURE	1

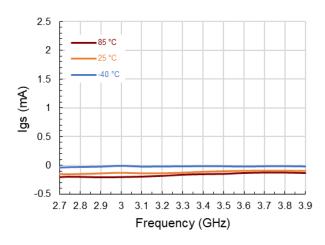


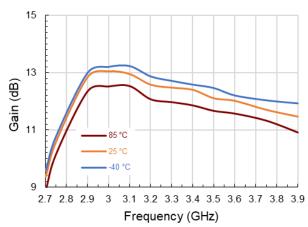
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

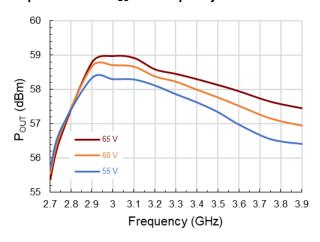

Output Power vs. Temperature and Frequency


Drain Efficiency vs. Temperature and Frequency

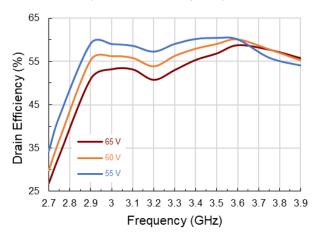

Drain Current vs. Temperature and Frequency

Gate Current vs. Temperature and Frequency

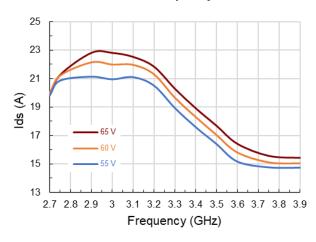
Large Signal Gain vs. Temperature and Frequency

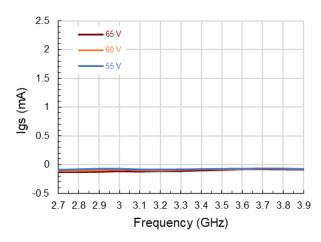


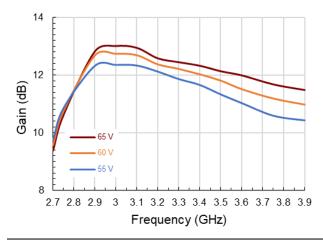
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


Output Power vs. VDS and Frequency

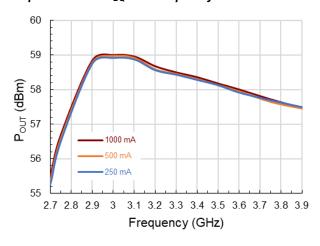

Drain Efficiency vs. V_{DS} and Frequency


Drain Current vs. V_{DS} and Frequency

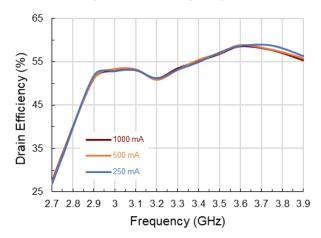
Gate Current vs. V_{DS} and Frequency

Large Signal Gain vs. VDS and Frequency

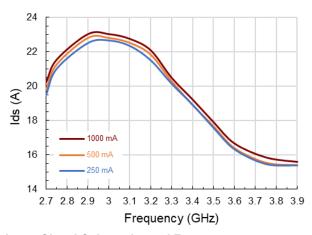
7

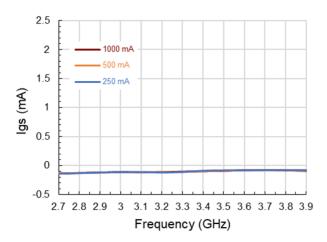


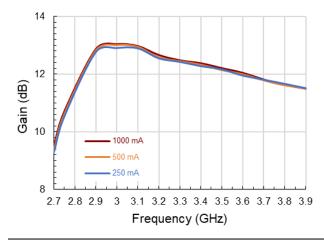
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

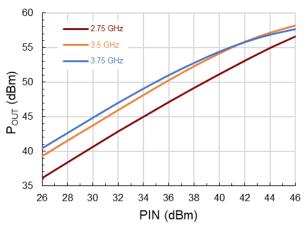

Output Power vs. IDQ and Frequency


Drain Efficiency vs. IDQ and Frequency

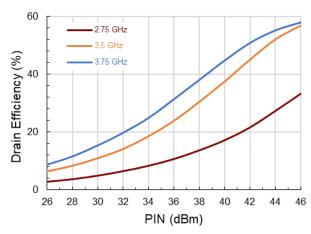

Drain Current vs. IDQ and Frequency

Gate Current vs. IDQ and Frequency

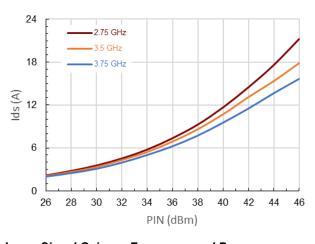
Large Signal Gain vs. IDQ and Frequency

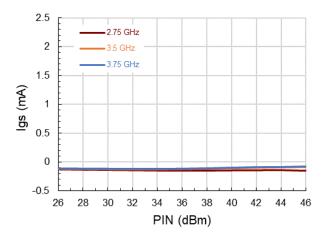


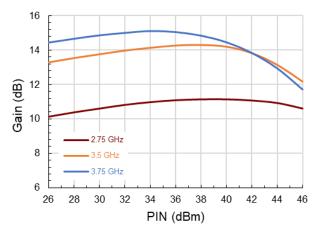
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

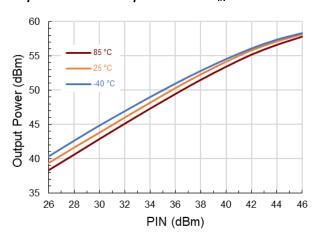

Output Power vs. Frequency and PIN


Drain Efficiency vs. Frequency and PIN

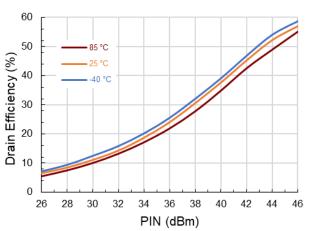

Drain Current vs. Frequency and PIN

Gate Current vs. Frequency and PIN

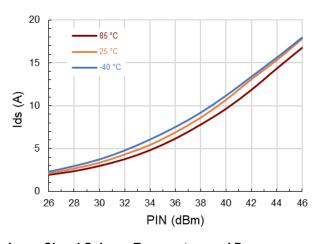
Large Signal Gain vs. Frequency and P_{IN}

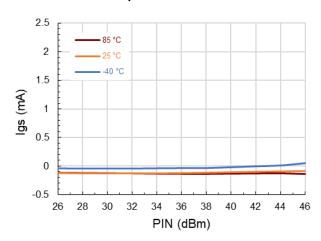


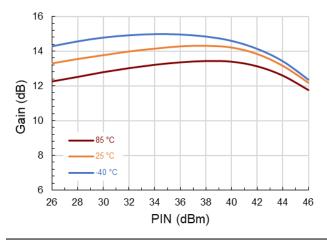
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

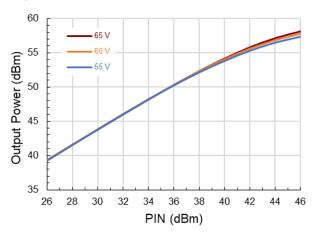

Output Power vs. Temperature and PIN


Drain Efficiency vs. Temperature and PIN

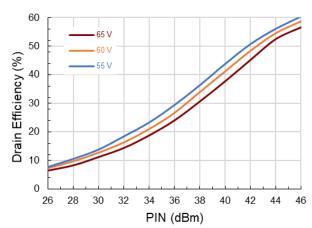

Drain Current vs. Temperature and PIN

Gate Current vs. Temperature and PIN

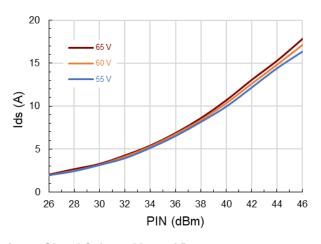
Large Signal Gain vs. Temperature and PIN

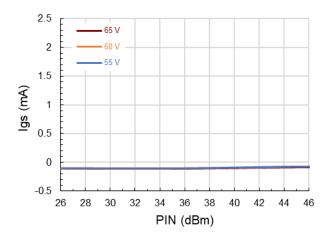


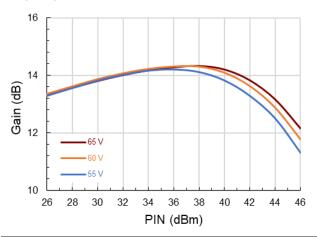
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

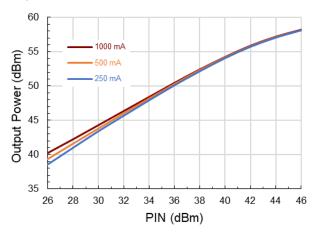

Output Power vs. VDS and PIN


Drain Efficiency vs. V_{DS} and P_{IN}

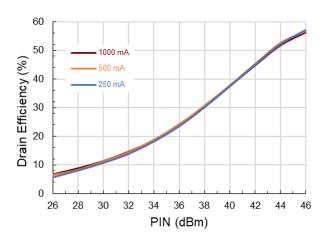

Drain Current vs. VDS and PIN

Gate Current vs. V_{DS} and P_{IN}

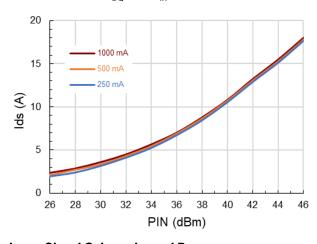
Large Signal Gain vs. VDS and PIN

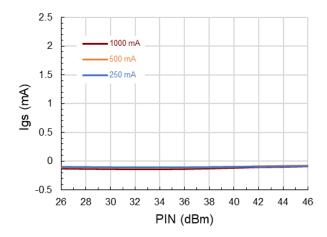


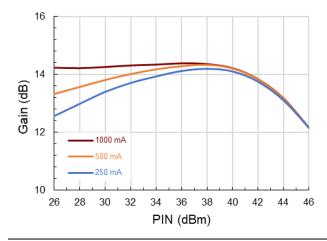
MAPC-A4032


Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture Pulsed 100 μ s 10%, P_{IN} = 46 dBm, V_{DS} = 65 V, I_{DQ} = 500 mA, Frequency = 3.5 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

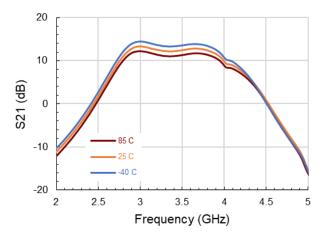

Output Power vs. IDQ and PIN


Drain Efficiency vs. IDQ and PIN

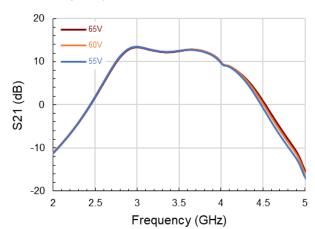

Drain Current vs. IDQ and PIN

Gate Current vs. IDQ and PIN

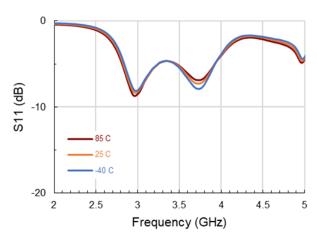
Large Signal Gain vs. IDQ and PIN

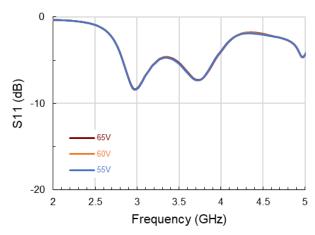


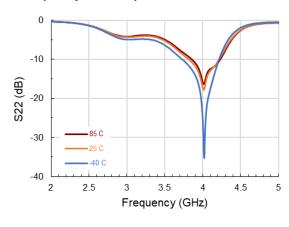
MAPC-A4032

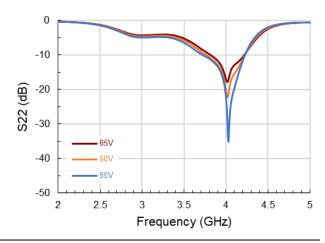

Rev. V2

Typical Performance Curves as Measured in the 2.75 – 3.75 GHz Evaluation Test Fixture: CW, V_{DS} = 65 V, I_{DQ} = 500 mA, P_{IN} = -20 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and Temperature


S21 vs Frequency and V_{DS}

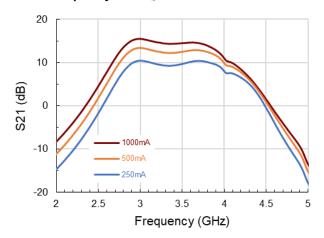

S11 vs Frequency and Temperature


S11 vs Frequency and V_{DS}

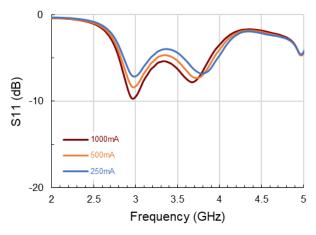
S22 vs Frequency and Temperature

S22 vs Frequency and V_{DS}

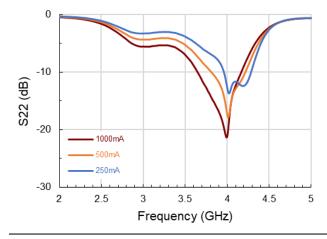
MAPC-A4032


Rev. V2

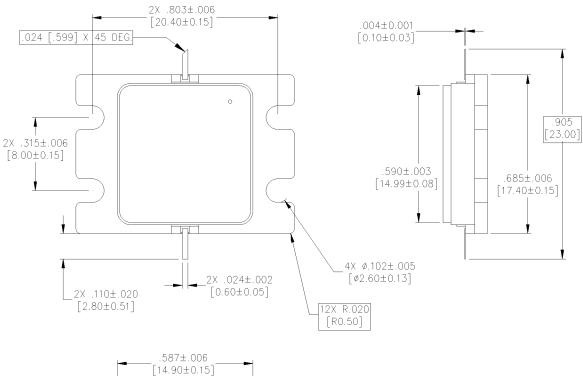
Typical Performance Curves as Measured in the 2.75–3.75 GHz Evaluation Test Fixture:

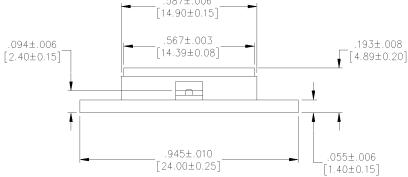

 \overrightarrow{CW} , V_{DS} = 65 V, I_{DQ} = 500 mA, P_{IN} = -20 dBm (Unless Otherwise Noted)

For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and IDQ

S11 vs Frequency and IDQ


S22 vs Frequency and IDQ



MAPC-A4032 Rev. V2

Product Dimensions (Package Type AC-587BH-2)

NOTES:

- ALL DIMENSIONS SHOWN AS in[mm]. CONTROLLING DIMENSIONS ARE IN in AND CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
- 2. ALL TOLERANCES ARE ±.005 [0.13] UNLESS OTHERWISE NOTED
- 3. LEAD FINISH: AU FLANGE FINISH: AU LID MATERIAL: CERAMIC
- 4. LID SEAL EPOXY MAY FLOW OUT A MAXIMUM OF .020 [0.51] FROM EDGE OF LID
- 5. LID MAY BE MIS-ALIGNED UP TO .010 [0.25] FROM PACKAGE IN ANY DIRECTION

GaN Amplifier 65 V, 500 W 2.75 - 3.75 GHz

MACOM PURE CARBIDE

MAPC-A4032

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.