

MAPC-A1525 Rev. V2

Features

- MACOM PURE CARBIDE® Amplifier Series
- Suitable for Linear & Saturated Applications
- Pulsed Operation: 450 W Output Power
- Internally Pre-Matched
- 50 V Operation
- High Thermal Conductivity Package for Maximum Heat Transfer
- Compatible with MACOM Power Management Bias Controller/Sequencer MABC-11040B

RADAR, Datalink and Satellite Communications

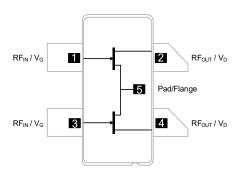
Description

The MAPC-A1525 is a high power GaN on Silicon Carbide HEMT D-mode amplifier suitable for 0.7 - 2.7 GHz frequency operation. The device supports pulsed operation with output power levels of 450 W (56.5 dBm) and in an air cavity ceramic package.

Typical Performance:

Measured under evaluation board at 3 dB Compression, 100 μ s pulse width, 10% duty cycle. V_{DS} = 50 V, I_{DQ} = 900 mA, T_{C} = 25°C

• Efficiency Tuned Board (2.5 - 2.7 GHz)


Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
2.5	57.5	17.0	60.5
2.6	56.7	18.0	65.7
2.7	55.5	18.6	63.3

• Wideband Tuned Board (1.0 - 2.5 GHz)

Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
1.0	56.6	14.8	57.7
1.3	55.7	13.3	60.3
1.7	55.7	14.2	52.3
2.1	55.7	13.7	45.6
2.5	56.3	13.8	53.6

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	RF _{IN} / V _G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	RF _{IN} / V _G	RF Input / Gate
4	RF _{OUT} / V _D	RF Output / Drain
5	Flange ¹	Ground / Source

The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1525-AS000	Bulk Quantity
MAPC-A1525-ASTR1	Tape and Reel
MAPC-A1525-ASSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1525 Rev. V2

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 900 \text{ mA}$ Note: Performance in MACOM Efficiency Tuned Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Saturated Output Power	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	P _{SAT}	-	56.4	-	dBm
Power Gain	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	G _{SAT}	-	18.0	į	dB
Saturated Drain Efficiency	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	η_{SAT}	-	65.2	-	%
Gain Variation (-40°C to +85°C)	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	ΔG	-	-0.012		dB/°C
Power Variation (-40°C to +85°C)	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	ΔP3.0dB	-	-0.003		dB/°C
Ruggedness: Output Mismatch	All phase angles	All phase angles Ψ VSWR = 10		VR = 10:	I, No Da	amage

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 900 \text{ mA}$ Note: Performance in MACOM Production Test Fixture, 50Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	G _{SAT}	18.1	18.7	-	dB
Saturated Drain Efficiency	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	η _{SAT}	59.3	63.9	-	%
Saturated Output Power	Pulsed ² , 2.6 GHz, 3 dB Gain Compression	P _{SAT}	55.8	56.4	-	dBm

^{2.} Pulse details: 100 µs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 150 V	I _{DLK}	-	-	57.6	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	57.6	mA
Gate Threshold Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 57.6 \text{ mA}$	V _T	-3.8	-3.0	-2.3	\
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 450 \text{ mA}$	V_{GSQ}	-	-2.7	-	V
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D, MAX}	-	55.0	-	Α

MAPC-A1525

Absolute Maximum Ratings 3,4,5,6,7

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	150 V		
Gate Source Voltage, V _{GS}	-8 to 2 V		
Gate Current, I _G	57.6 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Temperature	+275°C		

^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics⁷

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V},$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	0.69	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V, T _C = 85°C, T _{CH} = 225°C	$R_{\theta}(IR)$	0.55	°C/W

^{7.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

ESD Characteristics

Parameter	Class	Standard
Human Body Model (HBM)	1B	ANSI/ESDA/JEDEC JS-001

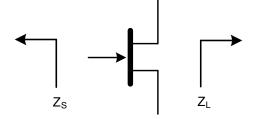
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM does not recommend sustained operation above maximum operating conditions. Operating at drain source voltage $V_{DS} \le 50 \text{ V}$ and $T_{CH} \le 275^{\circ}\text{C}$ will ensure MTTF > 2 x 10⁶ hours. MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where *T* is the channel temperature in degrees Celsius., A = 1.537, B = -24.81, and C = 21,330.

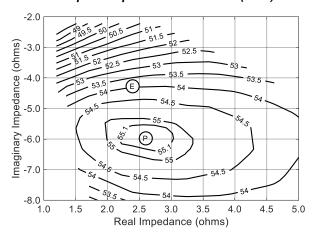

MAPC-A1525

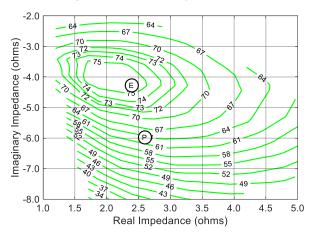
50 V Pulsed² Load-Pull Performance (Per Each Side of Symmetric Device) Reference Plane at Device Leads

		Maximum Output Power $V_{DS} = 50 \text{ V}, I_{DQ} = 450 \text{ mA}, T_{C} = 25^{\circ}\text{C}, P3.0dB$					
			V _{DS} = 50 \	/, I _{DQ} = 450 m <i>i</i>	A, Ic = 25°C, I	-3.00B	
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ⁸ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η₀ (%)	AM/PM (°)
800	2.0 - j1.2	3.9 - j0.9	24.5	54.4	276	63.9	68.5
1400	2.5 - j4.5	2.8 - j2.0	19.8	54.7	295	61.3	41.4
1800	3.0 - j6.0	3.1 - j3.2	18.5	55.6	363	63.1	29.0
2100	3.8 - j7.5	2.8 - j4.0	17.5	55.6	363	64.0	24.6
2500	5.0 - j10.0	2.8 - j5.3	17.2	55.3	339	63.4	-8.6
2700	6.0- j10.5	2.6 - j6.0	17.1	55.2	331	63.5	-43.0

			Maximum Drain Efficiency						
			V _{DS} = 50 V, I _{DQ} = 450 mA, T _C = 25°C, P3.0dB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ⁹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)		
800	2.0 - j1.2	5.9 + j2.6	27.2	52.4	174	74.2	40.0		
1400	2.5 - j4.5	3.3 + j0.6	22.1	52.9	195	72.5	24.7		
1800	3.0 - j6.0	3.1 - j1.2	20.0	54.3	269	72.5	15.7		
2100	3.8 - j7.5	2.5 - j1.8	19.6	54.0	251	75.7	9.0		
2500	5.0 - j10.0	2.2 - j3.1	19.5	53.4	219	75.1	-28.2		
2700	6.0- j10.5	2.4 - j4.3	19.1	54.0	251	76.0	-60.1		

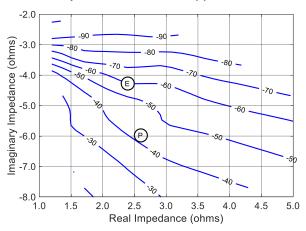
Impedance Reference

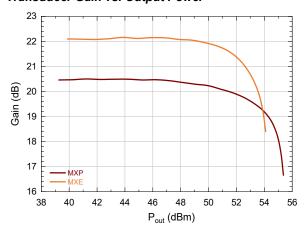

- Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.
- Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.
- 8. Load Impedance for optimum output power.
- 9. Load Impedance for optimum efficiency.

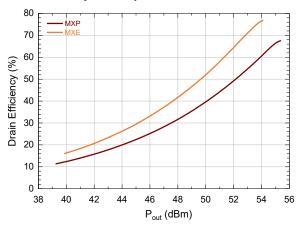

MAPC-A1525

Pulsed² Load-Pull Performance (Per Each Side of Symmetric Device) 2.7 GHz

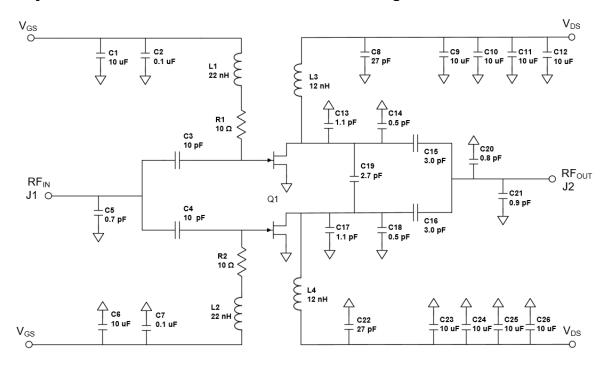
P3.0dB Loadpull Output Power Contours (dBm)


P3.0dB Loadpull Drain Efficiency Contours (%)


P3.0dB Loadpull Gain Contours (dB)


P3.0dB Loadpull AM/PM Contours (°)

Transducer Gain vs. Output Power


Drain Efficiency vs. Output Power

MAPC-A1525 Rev. V2

Efficiency Tuned Test Fixture and Recommended Tuning Solution 2.5 - 2.7 GHz

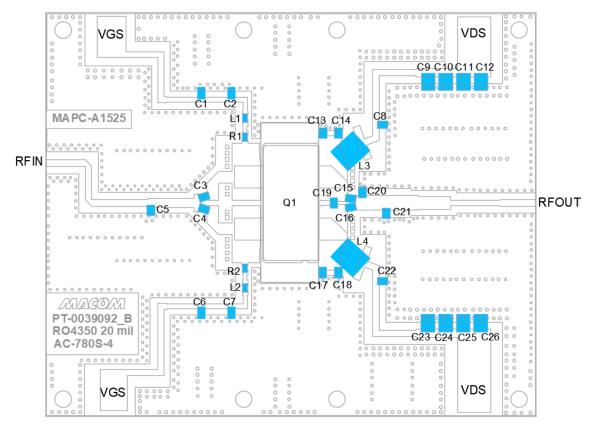
Description

Parts measured on evaluation board (20 mil thick RO4350B). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing* Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

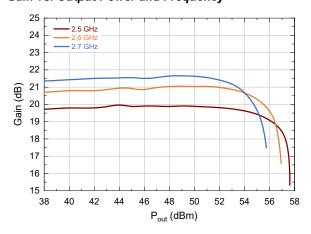
Turning the device OFF

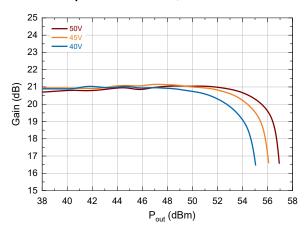

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

^{*} For an integrated power management solution please contact MACOM support regarding the MABC-11040B.

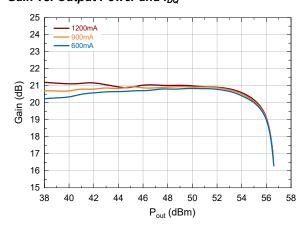
MAPC-A1525 Rev. V2

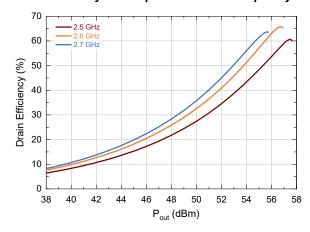
Efficiency Tuned Test Fixture and Recommended Tuning Solution 2.5 - 2.7 GHz

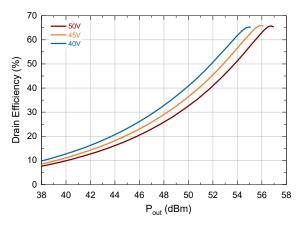

Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1,C6	10 μF	+/- 10%	Murata	GRM21BR61C106KE15K	
C2,C7	0.1 µF	+/- 10%	Murata	GRM219R71C104KA01D	
C3,C4	10 pF	+/- 0.1 pF	ATC	ATC800A100BT250XT	
C5	0.7 pF	+/- 0.1 pF	ATC	ATC800A0R7BT250XT	
C8,C22	27 pF	+/- 0.1 pF	ATC	ATC800A270BT250XT	
C9,C10,C11,C12,C23,C24, C25,C26	10 μF	+/- 10%	Murata	GRM32EC72A106KE05L	
C13,C17	1.1 pF	+/- 0.1 pF	ATC	ATC800A1R1BT250XT	
C14,C18	0.5 pF	+/- 0.1 pF	ATC	ATC800A0R5BT250XT	
C15,C16	3.0 pF	+/- 0.1 pF	ATC	ATC800A3R0BT250XT	
C19	2.7 pF	+/- 0.1 pF	ATC	ATC800A2R7BT250XT	
C20	0.8 pF	+/- 0.1 pF	ATC	ATC800A0R8BT250XT	
C21	0.9 pF	+/- 0.1 pF	ATC	ATC800A0R9BT250XT	
L1,L2	22 nH	+/- 5%	AVX	LCMC0603J22NGTAR	
L3,L4	12 nH	+/- 5%	Coilcraft	GA3094-ALC	
R1,R2	10 Ω	+/- 1%	Vishay	RCC060310R0FKEA	
Q1	MACOM GaN Power Amplifier			MAPC-A1525	
PCB	RO4350B, 20 mil, 1 oz. Cu, Au Finish				

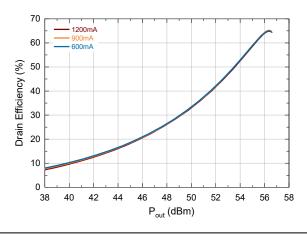

MAPC-A1525 Rev. V2

Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Efficiency Tuned Test Fixture: Pulsed² 2.6 GHz, V_{DS} = 50 V, I_{DQ} = 900 mA, T_{C} = 25°C (Unless Otherwise Noted)


Gain vs. Output Power and Frequency

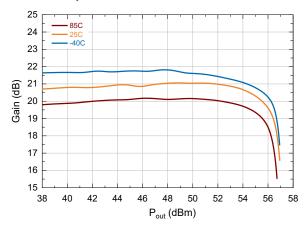

Gain vs. Output Power and VDS

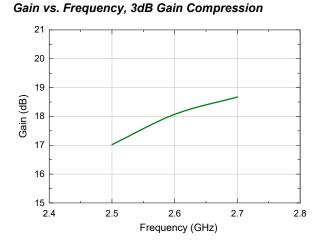

Gain vs. Output Power and Inc.


Drain Efficiency vs. Output Power and Frequency

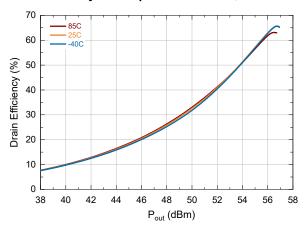
Drain Efficiency vs. Output Power and V_{DS}

Drain Efficiency vs. Output Power and IDQ

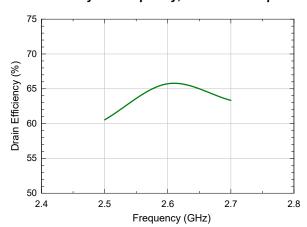


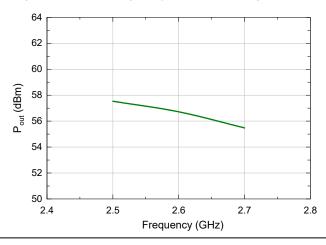


MAPC-A1525 Rev. V2

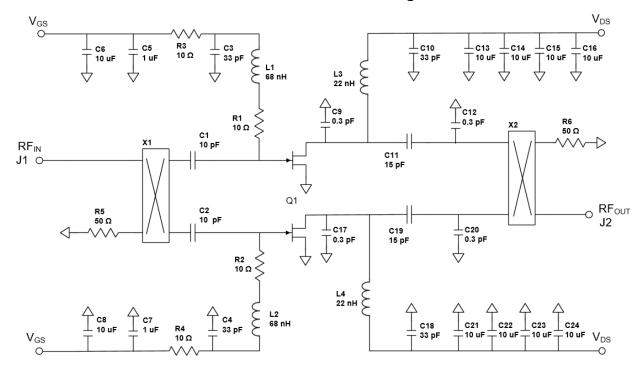

Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Efficiency Tuned Test Fixture: Pulsed² 2.6 GHz, V_{DS} = 50 V, I_{DQ} = 900 mA, T_{C} = 25°C (Unless Otherwise Noted)

Gain vs. Output Power and Tc




Drain Efficiency vs. Output Power and T_C

Drain Efficiency vs. Frequency, 3dB Gain Compression


Output Power vs. Frequency, 3dB Gain Compression

MAPC-A1525 Rev. V2

Wideband Tuned Test Fixture and Recommended Tuning Solution 1.0 - 2.5 GHz

Description

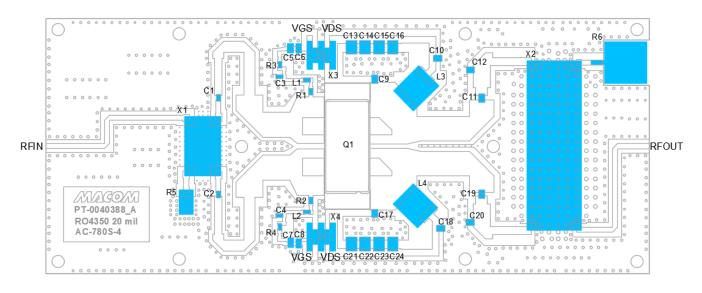
Parts measured on evaluation board (20 mil thick RO4350B). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing* Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

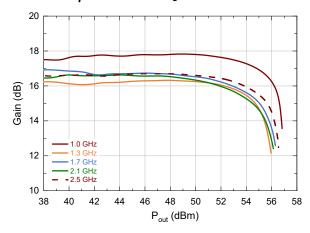
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

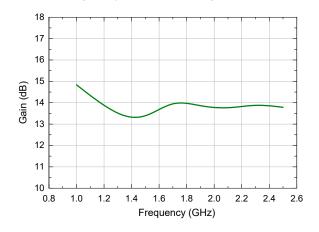

^{*} For an integrated power management solution please contact MACOM support regarding the MABC-11040B.

MAPC-A1525

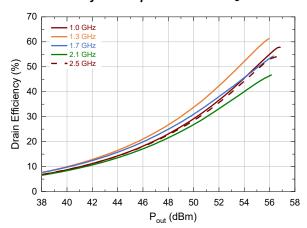
Rev. V2

Wideband Tuned Test Fixture and Recommended Tuning Solution 1.0 - 2.5 GHz

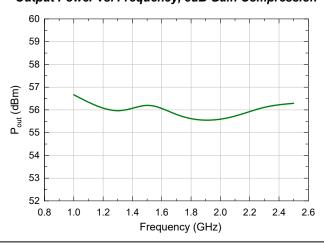

Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1,C2	10 pF	+/- 1%	PPI	0603N100FW251	
C3,C4	33 pF	+/- 2%	PPI	0603N330GW251	
C5,C7	1 µF	+/- 10 %	TDK	CGA4J2X7R1C105K125AA	
C6,C8	10 µF	+/- 10 %	TDK	C2012X6S1C106K085AC	
C9,C12,C17,C20	0.3 pF	+/- 0.1 pF	ATC	ATC800A0R3BT250XT	
C10,C18	33 pF	+/- 0.1 pF	ATC	ATC800A330BT250XT	
C11,C19	15 pF	+/- 0.1 pF	ATC	ATC800A150BT250XT	
C13,C14,C15,C16,C21,C22,C23,C24	10 μF	+/- 10%	Murata	GRM32EC72A106KE05L	
L1,L2	68 nH	+/- 5%	AVX	LCCI0603J68NGTAR	
L3,L4	22 nH	+/- 5%	Coilcraft	WA3096-ALC	
R1,R2,R3,R4	10 Ω	+/- 1%	Vishay	RCC060310R0FKEA	
R5	50 Ω Termination		Anaren	C45N50Z4	
R6	50 Ω Termination		Anaren	E250N50X4B	
X1	50 Ω Hybrid Coupler		Anaren	X3C17A1-03WS	
X2	25/50 Ω Hybrid Coupler		IPP	IPP-7105IT	
X3,X4	Connector Header 6 Pins		Samtec	HW-03-09-F-D-450-SM	
J1, J2	Radiall 9114-1113-000-SMA Connector			PT-0022540	
Q1	MACOM GaN Power Amplifier			MAPC-A1525	
PCB	RO4350, 20 mil, 1 oz. Cu, Au Finish				


MAPC-A1525

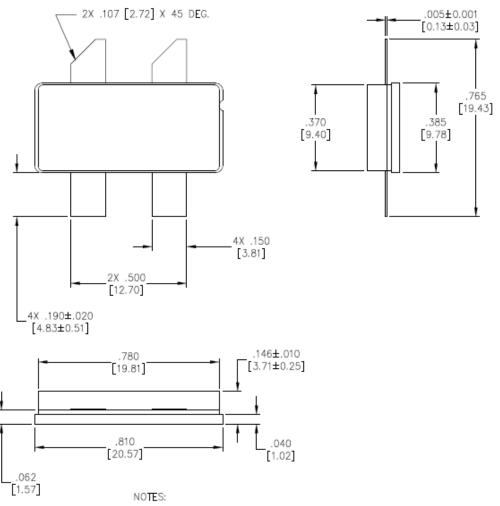
Typical Performance Curves as Measured in the 1.0 - 2.5 GHz Wideband Tuned Test Fixture: Pulsed², V_{DS} = 50 V, I_{DQ} = 900 mA, T_{C} = 25°C (Unless Otherwise Noted)


Gain vs. Output Power and Tc

Gain vs. Frequency, 3dB Gain Compression


Drain Efficiency vs. Output Power and T_C

Drain Efficiency vs. Frequency, 3dB Gain Compression


Output Power vs. Frequency, 3dB Gain Compression

MAPC-A1525 Rev. V2

Lead-Free AC-780S-4 Package Dimensions[†]

- ALL DIMENSIONS SHOWN AS in[mm]. CONTROLLING DIMENSIONS ARE IN in AND CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
- 2. ALL TOLERANCES ARE ±.005 [0.13] UNLESS OTHERWISE NOTED
- LEAD FINISH: AU FLANGE FINISH: AU
- 4. LID SEAL EPOXY MAY FLOW OUT A MAXIMUM OF .020 [0.51] FROM EDGE OF LID
- 5. LID MAY BE MIS-ALIGNED UP TO .010 [0.25] FROM PACKAGE IN ANY DIRECTION

[†] Reference Application Note AN0004363 for lead-free solder reflow recommendations. Moisture Sensitivity Level: Not Specified Plating is Au.

GaN Amplifier 50 V, 450 W 0.7 - 2.7 GHz

MACOM PURE CARBIDE.

MAPC-A1525 Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.