

MAPC-A1508

Rev. V3

Features

- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for CW and Pulsed Applications
- CW Operation: 700 W Output Power
- High Efficiency
- Broadband Operation: 896 928 MHz
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Applications

- 915 MHz Industrial Heating/Welding Systems
- Plasma Generators

Description

The MAPC-A1508 is a GaN on Silicon Carbide HEMT D-mode amplifier suitable for 900 - 930 MHz frequency operation. The device supports both pulsed and CW operation with minimum output power levels of 700 W (58.46 dBm) in an air cavity ceramic package.

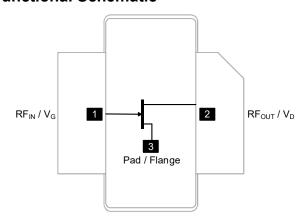
Typical RF Performance:

Measured under load-pull at 2.5 dB Compression, 100 µs pulse width, 10% duty cycle.

• $V_{DS} = 50 \text{ V}, I_{DQ} = 550 \text{ mA}, T_{C} = +25^{\circ}\text{C}$

Frequency (MHz)	Output Power ¹ (dBm)	Gain ² (dB)	η _D ² (%)
900	59.6	19	78.1
915	59.7	19	76.2
925	60	19	78.2

• $V_{DS} = 28 \text{ V}$, $I_{DO} = 550 \text{ mA}$, $T_{C} = +25 ^{\circ}\text{C}$


Frequency (MHz)	Output Power ¹ (dBm)	Gain ² (dB)	η _D ² (%)
900	56.2	17.9	73.5
915	56.5	17.3	71.8
925	56.3	17.2	73.5

- 1. Load impedance tuned for maximum output power.
- 2. Load impedance tuned for maximum drain efficiency.

AC-780S-2

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	RF _{IN} / V _G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	Flange ³	Ground / Source

^{3.} The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1508-AS000	Bulk Quantity
MAPC-A1508-ASTR1	Tape and Reel
MAPC-A1508-ASSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1508

Rev. V3

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 55 \text{ V}$, $I_{DQ} = 250 \text{ mA}$ Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 915 MHz	Gss	-	20.1	-	dB
Power Gain	CW, 915 MHz, 3.5 dB Gain Compression	G _{SAT}	-	16.6	-	dB
Saturated Drain Efficiency	CW, 915 MHz, 3.5 dB Gain Compression	η_{SAT}	-	73.2	-	%
Saturated Output Power	CW, 915 MHz, 3.5 dB Gain Compression	P _{SAT}	-	59	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed⁴, 915 MHz	ΔG	-	0.016	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed⁴, 915 MHz	ΔP3.5dB	-	0.002	-	dB/°C
Power Gain	CW, 915 MHz, P _{IN} = 39.6 dBm	G _P	-	18.8	-	dB
Drain Efficiency	CW, 915 MHz, P _{IN} = 39.6 dBm	η	-	67.1	-	%
Input Return Loss	CW, 915 MHz, P _{IN} = 39.6 dBm	IRL	-	-12	-	dB
Ruggedness: Output Mismatch	Pulsed ⁴ , All phase angles	Ψ	VSWR = 10:1, No Damag		amage	

RF Electrical Specifications: T_A = 25°C, V_{DS} = 50 V, I_{DQ} = 550 mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 915 MHz, 2.5 dB Gain Compression	G _{SAT}	16.4	17.6	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 915 MHz, 2.5 dB Gain Compression	η _{SAT}	63.3	68.4	-	%
Saturated Output Power	Pulsed ⁴ , 915 MHz, 2.5 dB Gain Compression	P _{SAT}	58.2	58.9	-	dBm

^{4.} Pulse details: $100 \ \mu s$ pulse width, 10% Duty Cycle.

DC Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	-	-	107	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	-	107	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 107 mA	V _T	-	-3.1	-	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 550 mA	V_{GSQ}	-	-2.7	-	V
Maximum Drain Current	V _{DS} = 7 V, pulse width 300 μs	I _{D, MAX}	-	91	-	Α

MAPC-A1508

Rev. V3

Absolute Maximum Ratings^{5,6,7,8,9}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	130 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	107 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +85°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+250°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.

- Exceeding any one or combination of these limits may cause permanent damage to this device. MACOM does not recommend sustained operation above maximum operating conditions. Operating at drain source voltage $V_{DS} < 55 \text{ V}$ will ensure MTTF > 2 x 10^6 hours. Operating at nominal conditions with $T_{CH} \le 225^{\circ}\text{C}$ will ensure MTTF > 2 x 10^6 hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{\frac{[B+C/(T+273)]}{2}}$ where T is the channel temperature in degrees Celsius, A = 1, B = -38.215, and C = 26,343.

Thermal Characteristics 10

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	R _θ (FEA)	0.40	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	$V_{DS} = 50 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(IR)$	0.32	°C/W

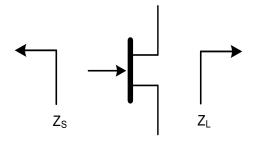
^{10.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling.


MAPC-A1508 Rev. V3

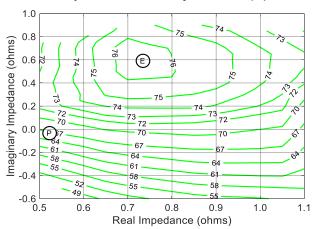
Pulsed⁴ Load-Pull Performance @ 50 V (Reference Plane at Device Leads)

		Maximum Output Power							
			V _{DS} = 50 V, I _{DQ} = 550 mA, T _C = 25°C, P2.5dB						
Frequency (MHz)	Z _{source} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η₀ (%)	AM/PM (°)		
900	0.5 - j1.5	F0: 0.5 + j0 2F0: 0.64 + j3.9	19.0	59.6	912.0	68.6	48.3		
915	0.5 - j1.6	F0: 0.5 - j0 2F0: 0.8 + j3.9	18.9	59.7	933.3	66.6	45.9		
925	0.6 - j1.7	F0: 0.5 + j0 2F0: 0.8 + j3.9	19.2	60.0	1000	69.5	46.4		

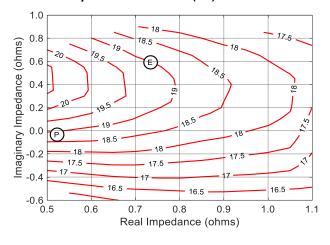
		Maximum Drain Efficiency								
			V _{DS} = 50 V, I _{DQ} = 550 mA, T _C = 25°C, P2.5dB							
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η₀ (%)	AM/PM (°)			
900	0.9 - j1.8	F0: 0.7 + j0.8 2F0: 0.64 + j3.9	19.0	56.2	416.9	78.1	14.1			
915	0.8 - j1.8	F0: 0.7 + j0.6 2F0: 0.8 + j3.9	19	56.9	489.8	76.2	15.5			
925	1.0 - j1.9	F0: 0.7 + j0.6 2F0: 0.8 + j3.9	19	56.9	489.8	78.2	11.9			

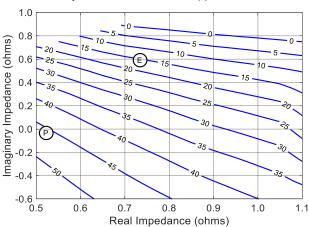
Impedance Reference

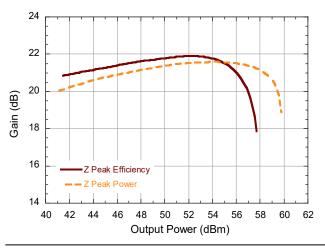

- Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.
- Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.
- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

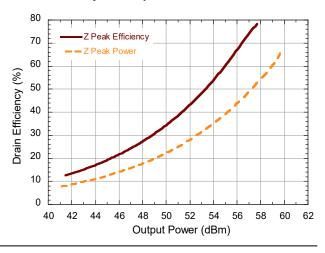

MAPC-A1508 Rev. V3

Pulsed⁴ 50 V Load-Pull Performance @ 915 MHz


P2.5dB Loadpull Output Power Contours (dBm)

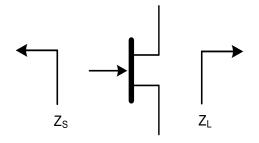

P2.5dB Loadpull Drain Efficiency Contours (%)


P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

Gain vs. Output Power

Drain Efficiency vs. Output Power

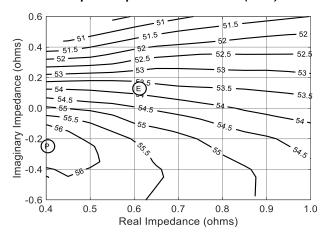

MAPC-A1508 Rev. V3

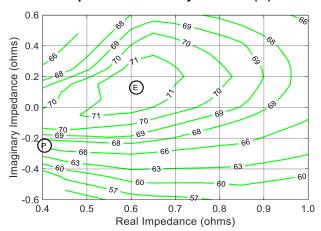
Pulsed⁴ Load-Pull Performance @ 28 V (Reference Plane at Device Leads)

		Maximum Output Power							
			$V_{DS} = 28 \text{ V}, I_{DQ} = 550 \text{ mA}, T_{C} = 25^{\circ}\text{C}, P2.5 \text{dB}$						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η₀ (%)	AM/PM (°)		
900	0.5 - j1.4	F0: 0.5 - j0.3 2F0: 0.74 + j3.9	16.4	56.2	416.9	65.4	51		
915	0.6 - j1.6	F0: 0.4 - j0.3 2F0: 0.68 + j3.9	17.1	56.5	446.7	66.9	50.4		
925	0.7 - j1.6	F0: 0.5 - j0.3 2F0: 0.69 + j2.6	16.4	56.3	426.6	65.5	47.3		

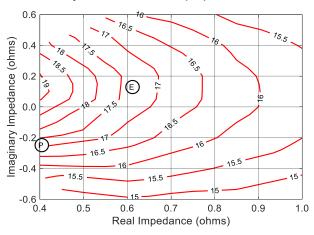
		Maximum Drain Efficiency					
		V _{DS} = 28 V, I _{DQ} = 550 mA, T _C = 25°C, P2.5dB					
Frequency (MHz)	Z _{source} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)
900	0.7 - j1.7	F0: 0.6 + j0.1 2F0: 0.74 + j3.9	17.9	54.2	263.0	73.5	30.7
915	0.9 - j1.9	F0: 0.6 + j0.1 2F0: 0.68 + j3.9	17.3	53.8	239.9	71.8	20.8
925	0.9 - j1.9	F0: 0.6 + j0.1 2F0: 0.69 + j2.6	17.2	53.9	245.5	73.5	16.3

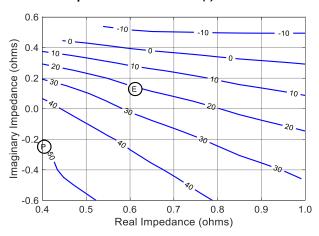
Impedance Reference

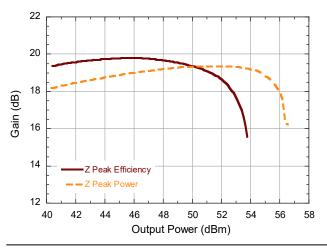

- Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.
- Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.
- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

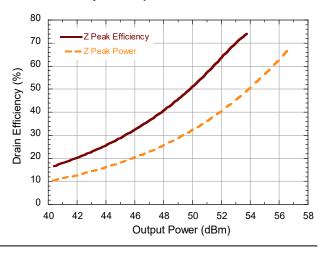

MAPC-A1508 Rev. V3

Pulsed⁴ 28 V Load-Pull Performance @ 915 MHz


P2.5dB Loadpull Output Power Contours (dBm)

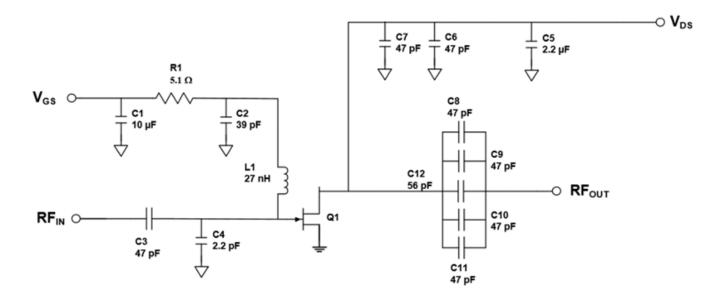

P2.5dB Loadpull Drain Efficiency Contours (%)


P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

Gain vs. Output Power

Drain Efficiency vs. Output Power



MAPC-A1508

Rev. V3

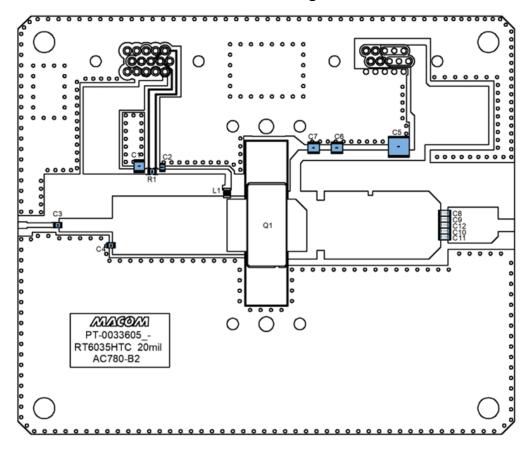
Evaluation Test Fixture and Recommended Tuning Solution 900 - 930 MHz

Description

Parts measured on evaluation board (20-mil thick RT6035HTC). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

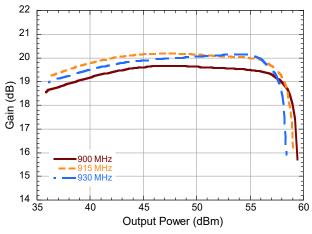
- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

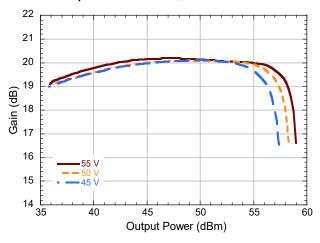

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

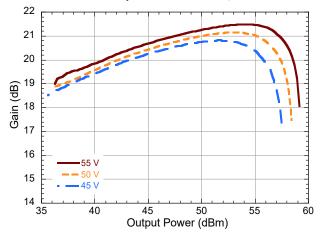
MAPC-A1508 Rev. V3

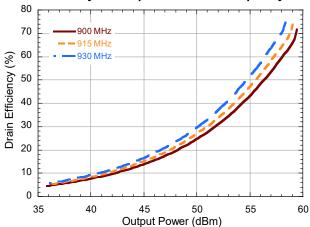
Evaluation Test Fixture and Recommended Tuning Solution 900 - 930 MHz

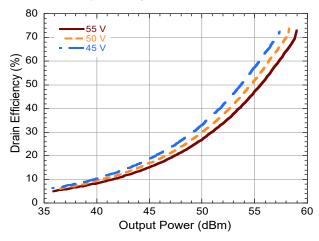

Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1	10 μF	+/- 10 %	TDK Corporation	GRM32EC72A106KE05L	
C2	39 pF	+/- 5 %	PPI	0805N390JW251X	
C3	47 pF	+/- 5 %	PPI	0805N470JW251X	
C4	2.2 pF	+/- 0.1 pF	PPI	0805N2R2BW251X	
C5	2.2 µF	+/- 20 %	Murata	KRM55TR72E225MH01L	
C6,C7, C8, C9, C10, C11	47 pF	+/- 5 %	Vishay	VJ1111D470JXEQJHT	
C12	56 pF	+/- 2 %	Vishay	VJ1111D560GXLQJ	
R1	5.1 Ω	+/- 5 %	YAGEO	RC0603JR-075R1L	
L1	27 nH	+/- 5 %	CoilCraft	1008CS-270XJLC	
Q1	Q1 MACOM GaN Power			MAPC-A1508	
PCB	RT6035HTC, 20 mil, 1.0 oz. Cu, Au Finish				


MAPC-A1508 Rev. V3

Typical Performance Curves as Measured in the 900 - 930 MHz Evaluation Test Fixture: CW 915 MHz, V_{DS} = 55 V, I_{DQ} = 250 mA, T_{C} = 25°C (Unless Otherwise Noted)

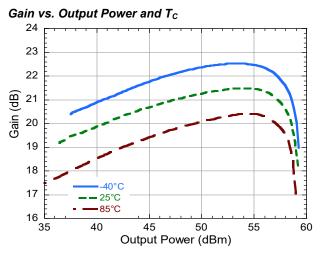

Gain vs. Output Power and Frequency

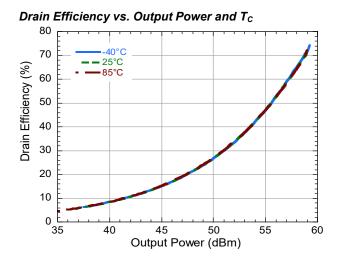

Gain vs. Output Power and VDS

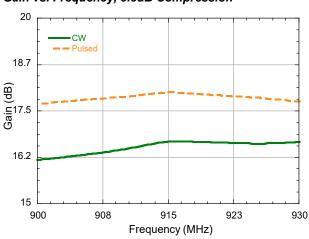

Pulsed⁴ Gain vs. Output Power and V_{DS}

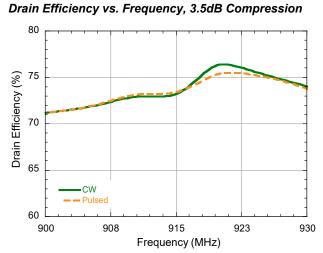
Drain Efficiency vs. Output Power and Frequency

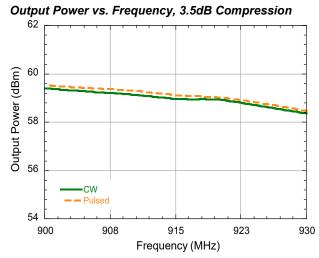
Drain Efficiency vs. Output Power and V_{DS}

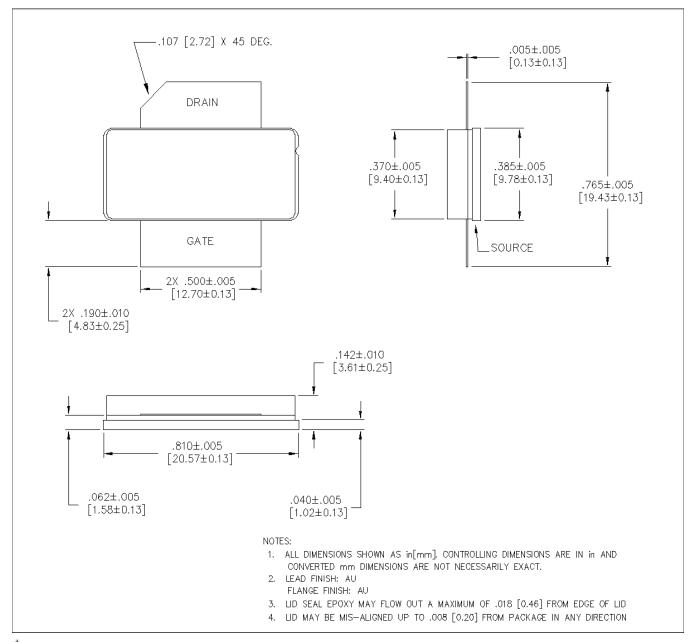

Pulsed⁴ Drain Efficiency vs. Output Power and V_{DS}




MAPC-A1508 Rev. V3


Typical Performance Curves as Measured in the 900 - 930 MHz Evaluation Test Fixture: Pulsed⁴ 915 MHz, V_{DS} = 55 V, I_{DQ} = 250 mA, T_{C} = 25°C (Unless Otherwise Noted)





MAPC-A1508 Rev. V3

Lead-Free AC-780S-2 Ceramic Package Dimensions[†]

[†] Reference Application Note AN0004363 for mounting recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Au plating on flange and leads.

GaN Amplifier 50 V, 700 W 900 - 930 MHz

MACOM PURE CARBIDE

MAPC-A1508

Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.