Features

- High Power SPDT Switch and 2-Stage LNA
- Broadband: 1-6 GHz
- LNA Gain:
$35.1 \mathrm{~dB} @ 2.5 \mathrm{GHz} ; 34.7 \mathrm{~dB} @ 3.75 \mathrm{GHz}$; 35.0 dB @ 4.7 GHz
- LNA Noise Figure:
0.86 dB @ $2.5 \mathrm{GHz} ; 0.88 \mathrm{~dB} @ 3.75 \mathrm{GHz}$; 0.98 dB @ 4.7 GHz
- RX Mode Switch Insertion loss:
0.33 dB @ $2.5 \mathrm{GHz} ; 0.36 \mathrm{~dB} @ 3.75 \mathrm{GHz}$; 0.46 dB @ 4.7 GHz
- TX Mode at 2.0-5.0 GHz:

Insertion Loss: 0.3 dB
P0.1dB: 40.6 dBm

- Single 5 V Supply
- Low DC Current: 80 mA in RX Mode
- Integrated Control Circuitry with 1.8 V Logic
- Lead-Free 3 mm 16 Lead QFN Package
- RoHS* Compliant

Applications

- 5G Massive MIMO
- Wireless Infrastructure
- TDD-based communication systems

Description

The MAMF-011156 is a compact surface mount, highly integrated high power SPDT switch and 2-stage low noise amplifier (LNA) module. It includes an antenna switch and a LNA in a compact 3 mm QFN package. All the bias circuitry and matching components are internal to the module.

This module operates from $1-6 \mathrm{GHz}$ and features high power handling, low noise figure, high linearity and low power consumption. The module requires a single 5 V supply and the T/R switch is 1.8 V CMOS compatible.

Ordering Information ${ }^{1}$

Part Number	Package
MAMF-011156-TR1000	1000 part reel
MAMF-011156-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Block

Pin Configuration ${ }^{2}$

Pin \#	Pin Name	Description
1	SW_RX	Switch RX Port
$2,4,6,7,12$	N/C	Internally No Connect
3	TERM	Termination Port
5	ANT	Antenna Port
8	V DD 2	Supply Voltage
$9,10,14,15$	GND	Ground
11	RX OUT	RX Output Port
13	T/R	Logic Signaling Pin
16	LNA ${ }_{\text {IN }}$	LNA Input Port
17	Paddle 4	Ground

2. MACOM recommends connecting N/C pins to ground.
3. DC blocking capacitor must be connected to pin 1.
4. The exposed pad centered on the package bottom must be connected to PCB ground with low electrical and thermal resistances.
[^0]AC Electrical Specifications (LNA, RX Mode): $P_{\text {IN }}=-30 \mathrm{dBm}, T_{C}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Gain	LNA $_{\text {IN }}$ to $R X_{\text {out }}$ 2.5 GHz 3.75 GHz 4.7 GHz	dB	$\begin{aligned} & 32 \\ & 32 \\ & - \end{aligned}$	$\begin{aligned} & 35.1 \\ & 34.7 \\ & 35.0 \end{aligned}$	-
Input IP3	$\begin{gathered} \text { Pin } / \text { tone }=-30 \mathrm{dBm}, \text { Tone Delta }=2 \mathrm{MHz}, \\ \text { LNA }_{\text {IN }} \text { to } R X_{\text {out }} \\ 2.5 \mathrm{GHz} \\ 3.75 \mathrm{GHz} \\ 4.7 \mathrm{GHz} \\ \hline \end{gathered}$	dBm	-	$\begin{aligned} & -4.3 \\ & -3.7 \\ & -4.7 \end{aligned}$	-
Input P1dB	LNA $_{\text {IN }}$ to $R X_{\text {out }}$ 2.5 GHz 3.75 GHz 4.7 GHz	dBm	-	$\begin{aligned} & -17.2 \\ & -17.5 \\ & -18.8 \end{aligned}$	-
Noise Figure	LNA $_{\text {IN }}$ to RX 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 0.86 \\ & 0.88 \\ & 0.98 \\ & \hline \end{aligned}$	-
LNA ${ }_{\text {IN }}$ Port Return Loss	$\begin{gathered} \mathrm{LNA}_{\text {IV }} \text { Port } \\ 2.5 \mathrm{GHz} \\ 3.75 \mathrm{GHz} \\ 4.7 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 30 \\ & 23 \\ & 22 \end{aligned}$	-
RX ${ }_{\text {out }}$ Port Return Loss	$\begin{gathered} \text { RX }{ }_{\text {Out }} \text { Port } \\ 2.5 \mathrm{GHz} \\ 3.75 \mathrm{GHz} \\ 4.7 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 14 \\ & 17 \\ & 15 \end{aligned}$	-
Reverse Isolation	$\mathrm{RX}_{\text {out }}$ to $\mathrm{LNA}_{\text {IN }}$ 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 53 \\ & 55 \\ & 60 \end{aligned}$	-

AC Electrical Specifications (Switch, RX Mode): $P_{\text {IN }}=-10 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	ANT to SW_RX 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 0.33 \\ & 0.36 \\ & 0.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & - \end{aligned}$
P0.1dB Compression Point	ANT to SW_RX, 3.75 GHz, 2μ s pulse width, 10% duty cycle	dBm	-	31	-
ANT Port Return Loss	$\begin{gathered} \text { ANT Port } \\ \text { 2.5 GHz } \\ 3.75 \mathrm{GHz} \\ 4.7 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 36 \\ & 25 \\ & 23 \end{aligned}$	-
SW_RX Port Return Loss	SW_RX Port 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 32 \\ & 27 \\ & 23 \end{aligned}$	-
ANT - TERM Isolation	ANT to TERM 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 27 \\ & 24 \\ & 21 \end{aligned}$	-

AC Electrical Specifications (Switch, TX Mode):
 $P_{\text {IN }}=-10 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	ANT to TERM 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 0.28 \\ & 0.28 \\ & 0.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
P0.1dB Compression Point	ANT to TERM, 3.75 GHz, $2 \mu \mathrm{~s}$ pulse width, 10% duty cycle	dBm	-	40.6	-
ANT Port Return Loss	ANT Port 2.5 GHz 3.75 GHz 4.7 GHz	dB	-	$\begin{aligned} & 23 \\ & 33 \\ & 23 \end{aligned}$	-
TERM Port Return Loss	$\begin{gathered} \text { TERM Port } \\ 2.5 \mathrm{GHz} \\ 3.75 \mathrm{GHz} \\ 4.7 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 23 \\ & 28 \\ & 23 \end{aligned}$	-
ANT - SW_RX Isolation	$\begin{gathered} \text { ANT to SW_RX } \\ 2.5 \mathrm{GHz} \\ 3.75 \mathrm{GHz} \\ 4.7 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 29 \\ & 26 \\ & 24 \\ & \hline \end{aligned}$	-
ANT Port Input Power	ANT Port, $2.5 \mathrm{GHz}, \mathrm{CW}, \mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$ ANT Port, 2.5 GHz , LTE (10 dB PAR), $\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$	dBm	-	$\begin{aligned} & 39 \\ & 36 \end{aligned}$	-

Transient Electrical Specifications:
Freq. $=2.5 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=-30 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
T/R Switch Settling Time	ANT to SW_RX switch settling time within 0.3 dB of final value after T/R command	$\mu \mathrm{s}$	-	0.3	-
T/R Gain Settling Time	$\mathrm{LNA}_{\text {IN }}$ to $R X_{\text {out }}$ gain settling time within 0.3 dB of final value after T/R command	$\mu \mathrm{s}$	-	0.3	-
T/R Insertion Loss Settling Time	ANT to TERM path insertion loss settling time within 0.3 dB of final value after T/R command	$\mu \mathrm{s}$	-	0.3	-
Power on Switch Settling Time	ANT to SW_RX switch settling time within 0.5 dB of final value after DC power on	ms	-	1	-
Power on Gain Settling Time	LNA 0.5 dB of final value after DC power on	ms	-	1	-
Power on Insertion Loss Settling					
Time	ANT to TERM settling time within 0.5 dB of final value after DC power on	ms	-	1	-

DC Electrical Specifications: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Supply Voltage	-	V	4.75	5	5.25
Amplifier Bias Current	RX Mode TX Mode	mA	-	80	-
T/R Control Voltage	RX Mode, Logic High TX Mode, Logic Low	V	-	1.8	-
T/R Logic Input Current	RX Mode, Logic High TX Mode, Logic Low	$\mu \mathrm{A}$	-	40 $+/-0.03$	-

Control Truth Table

T/R Control	
RX Mode	Logic High
TX Mode	Logic Low or Open

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Antenna Input Power ${ }^{7}$ Freq. $=3.75 \mathrm{GHz}$: RX Mode, LNA ${ }_{\text {IN }}$ RX Mode, ANT TX Mode, ANT	23 dBm LTE (8 dB PAR), 26 dBm CW 28 dBm LTE (8 dB PAR), 31 dBm CW 39 dBm LTE (8 dB PAR), 42 dBm CW
DC Voltages: $V_{D D}, A N T, T E R M, S W _R X \& L N A_{I N}$ $T / R \& R X_{\text {OuT }}$	$\begin{aligned} & -0.5 \text { to }+5.5 \mathrm{~V} \\ & -0.5 \text { to }+2.75 \mathrm{~V} \end{aligned}$
Junction Temperature: $\begin{aligned} & \text { RX Mode }{ }^{8,10} \\ & \text { TX Mode, } \\ & \text { TX Mode } \end{aligned}$	$\begin{aligned} & +150^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & +140^{\circ} \mathrm{C} \end{aligned}$
Operating Temperature ${ }^{9}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Single event, up to 10 seconds duration.
8. Operating at nominal conditions with $T_{j} \leq+150^{\circ} \mathrm{C}$ (RX Mode, LNA), $\mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ (RX Mode, Switch) and $\mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ (TX Mode) will ensure MTTF >> 1×10^{6} hours.
9. Operating/Case temperature $\left(T_{C}\right)$ is the temperature of the exposed paddle.
10. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta_{J C} * P_{D I S s}$ where $P_{\text {DISs }}$ is the total DC \& RF dissipated power.

- RX Mode: Typical thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=33.4^{\circ} \mathrm{C} / \mathrm{W}$.
- TX Mode: Typical thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=15.3^{\circ} \mathrm{C} / \mathrm{W}$.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Parameter	Rating	Standard
Human Body Model (HBM)	$500 ~ V$ (Class 1B)	ESDA/JEDEC JS-001
Charged Device Model (CDM)	$1000 ~ V$ (Class C3)	ESDA/JEDEC JS-002

Power Supplies

De-coupling capacitors should be placed at the V_{DD} supply pin to minimize noise and fast transients. Supply voltage change or transients should have a slew rate smaller than $1 \mathrm{~V} / 10 \mu \mathrm{~s}$. In addition, all control pins should remain at $0 \mathrm{~V}(+/-0.3 \mathrm{~V})$ and no RF power should be applied while the supply voltage ramps or while it returns to zero.

Sample Board Schematic

Sample Board PCB Layout

- Material: Rogers 4003C
- Dielectric thickness: 0.203 mm
- Track/Gap: 0.350/0.263 mm
- Finished copper thickness: $44 \mu \mathrm{~m}+/-10 \mu \mathrm{~m}$
- Finish both sides: $0.075 \mu \mathrm{~m}$ gold over $4.5 \mu \mathrm{~m}$ nickel
- Further layout information available on request

Parts List

Part	Value	Case style
C 1	$10 \mu \mathrm{~F}$	0603
C 2	5 pF	0402
C 3	470 pF	0402
C 4	10 nF	0402
C 5	8.2 pF	0402
C 6	0.2 pF	0402
R1	$1 \mathrm{k} \Omega$	0402
R2	100Ω	0402

Typical Performance Curves (LNA):

$P_{I N}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

$L N A_{\text {IN }}$ to $R X_{\text {out }}$ Gain 11 - RX Mode

LNA $A_{\text {IN }}$ Port Return Loss - RX Mode

$L N A_{\text {IN }}$ to $R X_{\text {out }}$ Input P1dB ${ }^{11}$ - RX Mode

$L N A_{I N}$ to $R X_{\text {out }}$ Noise Figure ${ }^{11}$ - $R X$ Mode

RX $X_{\text {out }}$ Port Return Loss - RX Mode

LNA $A_{\text {IN }}$ to $R X_{\text {out }}$ Input IP3-RX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

Typical Performance Curves (Switch, RX Mode):

$P_{I N}=-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

ANT to SW_RX Insertion Loss ${ }^{11}$ - RX Mode

ANT Port Return Loss - RX Mode

ANT to SW_RX Port Switch Compression Characteristic ${ }^{11,12}$ at $3.75 \mathrm{GHz}-\mathrm{RX}$ mode

ANT to TERM Isolation ${ }^{11}$ - RX Mode

SW_RX Port Return Loss - RX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.
12. Measured with 2μ s pulse width, 10% duty cycle. RF trace and connector losses are de-embedded.

Typical Performance Curves (Switch, TX Mode):

$P_{\text {IN }}=-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

ANT to TERM Insertion Loss ${ }^{11}$ - TX Mode

ANT Port Return Loss - TX Mode

ANT to TERM Port Switch Compression Characteristic ${ }^{11,12}$ at 3.75 GHz - TX mode

ANT to SW_RX Isolation ${ }^{11}$ - TX Mode

TERM Port Return Loss - TX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.
12. Measured with $2 \mu \mathrm{~s}$ pulse width, 10% duty cycle. RF trace and connector losses are de-embedded.

Lead-Free 3 mm 16-Lead QFN ${ }^{\dagger}$

\dagger Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements in accordance to JEDEC J-STD-020D.
Plating is NiPdAu over Copper

MAMF-011156
Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

