High Power Switch - LNA Module with Bypass 1.4 - 4.2 GHz

MAMF-011150

Rev. V2

Features

- High Power Switch and 2-Stage LNA with Integrated DC converter and Switch Driver
- Bypass Switch on Second LNA Stage
- High RF Input Power, TX mode Up to 80 W CW Power Handling @ +100°C
- Gain, RX High Gain Mode: 37 dB @ 1.8 GHz 34 dB @ 2.7 GHz; 31 dB @ 3.5 GHz
- Gain, RX Low Gain Mode: 19 dB @ 1.8 GHz 20 dB @ 2.7 GHz; 19 dB @ 3.5 GHz
- Noise Figure, RX Mode: 1.1 dB @ 1.8 GHz 1.4 dB @ 2.7 GHz; 1.7 dB @ 3.5 GHz
- Fast Switching Speed 350 ns
- +5 V DC Supply only
- Compatible with 1.8 V and 3.3 V logic
- Lead-Free 6 mm 40-Lead HQFN Package
- RoHS* Compliant

Applications

- High Power TDD 4G and 5G Base Stations
- Wireless Infrastructure
- TDD based Communication System

Description

The MAMF-011150 is a highly integrated compact surface mount module containing a PIN diode high power SPDT switch and 2-stage LNA with a 5 V power management chip in a 6 mm 40-lead HQFN plastic package.

The device features high power handling, high isolation at Tx mode, and high gain, low noise figure RX mode. It has an integrated bias controller utilizing a boost circuit. The switch portion requires only a single 5 V supply, and a single TX / RX control signal that is 1.8/3.3 V logic compatible.

The 2-stage LNA has an additional bypass feature for the second stage and has a separate Enable pin which can be used independently or tied to the VCTRL pin on the board for simple TX/RX switching.

Ordering Information¹

Part Number	Package
MAMF-011150-TR1000	1000 piece reel
MAMF-011150-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Functional Schematic

Pin Configuration²

Pin #	Pin Name	Description	
1-3, 5-11, 15, 19, 23, 25, 30, 32, 34, 38, 40	N/C	Internally No Connect	
13, 17, 37	GND	Ground	
4	ANT	RF Input	
12	RX	SWITCH RX Output	
14	LNA IN	LNA Input	
16	EN	LNA Enable Pin	
18	VDD	LNA Supply	
20	LNA OUT	LNA output	
21	BP	Bypass switch control	
22	RXD Bias	RX shunt Driver Output	
24	RXD	RX Series Driver Output	
26	COMP	DC-DC Comp	
27	FB	DC-DC Feedback	
28	VREC	DC-DC Boost Voltage	
29	VUREC	DC-DC VUREC	
31	VCC	Switch 5V Supply	
33	VCTRL	T/R Logic Signal	
35	TXD	TX Driver Output	
36	RX Bias	RX Shunt Bias	
39	ТΧ	TX Output/Bias	
41	Paddle ³	Ground	

MACOM recommends connecting unused package pins to ground.

The exposed pad centered on the package bottom must be connected to RF, DC & thermal ground.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Electrical Specifications: T_A = +25°C, V_{CC} = V_{DD} = 5 V, Z_0 = 50 Ω , TX State: ANT to TX ON, VCTRL = EN = 1.8 V, RX State: ANT to LNA OUT ON, VCTRL = EN = 0 V

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Input RF Power @ +100°C ANT to TX ON	1.8 GHz, 2.7 GHz, 3.5 GHz	w	_	80	_
Switch Insertion Loss ANT to TX ON	1.8 GHz 2.7 GHz 3.5 GHz	dB	_	0.3 0.4 0.5	0.7
Input and Output Return Loss ANT to TX ON	1.8 GHz 2.7 GHz 3.5 GHz	dB	_	23 20 21	_
Noise Figure in Both Modes ANT to LNA OUT	1.8 GHz 2.7 GHz 3.5 GHz	dB	_	1.1 1.4 1.7	_
Gain in High Gain Mode ANT to LNA OUT	1.8 GHz 2.7 GHz 3.5 GHz	dB	30 —	37 34 31	_
Gain in Low Gain Mode ANT to LNA OUT	1.8 GHz 2.7 GHz 3.5 GHz	dB	 17.5 	19 20 19	_
Isolation ANT to RX	Switch State = ANT to TX ON	dB		50	_
Output IP3 in High Gain Mode ANT to LNA OUT	P _{OUT} = +10 dBm per tone, 11 MHz spacing	dBm	_	32	_
Output IP3 in Low Gain Mode ANT to LNA OUT	P _{OUT} = +3 dBm per tone, 11 MHz spacing	dBm	_	27	_
Output P1dB in High Gain Mode	ANT to LNA OUT	dBm	_	19	_
Output P1dB in Low Gain Mode	ANT to LNA OUT	dBm	_	13	_
V _{DD} Bias Current (LNA)	High Gain Mode Low Gain Mode	mA	_	108 44	_
Logic Control Voltage	Logic High Logic Low	V	1.2 0		3.45 0.6
Logic Input Current	Logic High Logic Low	μA	—	60 0.01	_
RX mode V _{CC} Supply Current ⁴	_	mA		102	_
TX mode V _{cc} Supply Current ⁴	_	mA	—	150	_

4. The average current for the switch is set with external resistors. The resistor values can be adjusted higher to reduce the Vcc average current.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

TX/RX Switch Bias Table

ANT - TX	ANT - RX	VCTRL
ON	OFF	High
OFF	ON	Low

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Parameter	Rating	Standard
Human Body Model (HBM)	Class 1B	ESDA/JEDEC JS-001
Charged Device Model (CDM)	Class C3	ESDA/JEDEC JS-002

LNA Logic Truth Table⁵

Mode	EN	BP	Note
RX Mode, High Gain	Low	Low	LNA1 and LNA2 ON, Bypass Switch OFF
RX Mode, Low Gain	Low	High	LNA1 ON, LNA2 OFF, Bypass Switch ON
TX Mode, High Isolation	High	Low	LNA1 and LNA2 OFF, Bypass Switch OFF
TX Mode, Low Isolation	High	High	LNA1 and LNA2 OFF, Bypass Switch ON

5. If V_{DD} pin is used to turn the LNAs ON and OFF, the logic pins need to stay at Logic Low during V_{DD} ramp up and ramp down.

Absolute Maximum Ratings^{6,7,8}

Parameter	Absolute Maximum
RF Input Power ANT to RX LNA to LNA OUT ANT to TX ON	48 dBm CW 19 dBm 50 dBm CW @ +100°C, 3.5 GHz
DC Voltages: V _{CC} , V _{DD} VCTRL, EN, BP	-0.5 to +5.5 V -0.3 to 3.6 V
Junction Temperature Switch ⁸ LNA ^{8,9}	+175°C +150°C
Case (Paddle) Temperature	-40°C to +120°C
Storage Temperature	-55°C to +150°C

6. Exceeding any one or combination of these limits may cause permanent damage to this device.

7. MACOM does not recommend sustained operation near these survivability limits.

8. Operating at nominal conditions with $T_J \le +150^{\circ}C$ (LNA) and $T_J \le +175^{\circ}C$ (Switch) will ensure MTTF >> 1 x 10⁶ hours.

9. LNA Junction Temperature $(T_J) = T_C + \Theta_{JC}^*(P_{DISS})$ where P_{DISS} is the total DC & RF dissipated power.

• LNA: Typical thermal resistance (Θ_{JC}) = 33.4 °C/W.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

High Power Switch - LNA Module with Bypass 1.4 - 4.2 GHz

MAMF-011150

Rev. V2

PCB Layout

Part	Value	Case Style (Min Rating)		
C1,C2,C25	27 pF	0603		
C3,C7,C16	1 nF	0603 (≥100V)		
C4	1 µF	0805		
C5	10 pF	0402		
C6	100 pF	0603 (≥100V)		
C8,C17,C18,C19	DNP	0402		
C9,C13	2.2 µF	1210		
C10	470 pF	0402		
C11	100 nF	0805		
C12	10 nF	0805		
C14,C24	10 µF	0603		
C15	10 pF	0402		
C20	4.7 pF	0402		
C21,C22,C23	10 nF	0603		
C26,C27	10 nF	0402		
C28	0.1 µF	0402		
C31	0.1 pF	0603		
L1,L2	33 nH	0402		
L3	10 nH	0402		
L4	10 µH	2.5 x 2 mm		
L5	47 nH	0402		
R1,R2	69.8 Ω	1206 (≥0.25W)		
R3,R4	3.6 kΩ	0603 (≥0.2W)		
R7	1.6 MΩ	0402		
R8	115 KΩ	0402		
R9,R10,R19	100 Ω	0402		
R11,R18	0 Ω	0402		
D1	CMPSH- 3CE TR	750mA/40V/155°C SOT23		

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Application Schematic

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>RX High Gain mode. Typical Performance Curves mode</u>. $P_{IN} = -30 \text{ dBm}$, $V_{CC} = V_{DD} = 5 \text{ V}$, $T_C = +25^{\circ}\text{C}$, $Z_0 = 50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (& Temp.) in High Gain Mode

ANT Port Return Loss over swept Frequency (& Temp.) in High Gain Mode

OIP3 over swept Frequency (& Temp.) with P_{OUT} /Tone = -30 dBm & 10 MHz tone spacing in High Gain Mode

Noise Figure over swept Frequency (& Temp.) in High Gain Mode

LNA OUT Port Return Loss over swept Frequency (& Temp.) in High Gain Mode

Output P1dB Compression over swept Frequency (& Temp.) in High Gain Mode

6

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

<u>RX High Gain mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (& Temp.) in High Gain Mode

ANT Port Return Loss over swept Frequency (& Temp.) in High Gain Mode

OIP3 over swept Frequency (& Temp.) with P_{OUT} /Tone = -30 dBm & 10 MHz tone spacing in High Gain Mode

Noise Figure over swept Frequency (& Temp.) in High Gain Mode

LNA OUT Port Return Loss over swept Frequency (& Temp.) in High Gain Mode

Output P1dB Compression over swept Frequency (& Temp.) in High Gain Mode

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>RX High Gain mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (& Temp.) in High Gain Mode

ANT Port Return Loss over swept Frequency (& Temp.) in High Gain Mode

OIP3 over swept Frequency (& Temp.) with P_{OUT} /Tone = -30 dBm & 10 MHz tone spacing in High Gain Mode

Noise Figure over swept Frequency (& Temp.) in High Gain Mode

LNA OUT Port Return Loss over swept Frequency (& Temp.) in High Gain Mode

Output P1dB Compression over swept Frequency (& Temp.) in High Gain Mode

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>RX Low Gain mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (& Temp.) in Low Gain Mode

ANT Port Return Loss over swept Frequency (& Temp.) in Low Gain Mode

OIP3 over swept Frequency (& Temp.) with P_{OUT}/Tone = -30 dBm & 10 MHz tone spacing in in Low Gain-Mode

Noise Figure over swept Frequency (& Temp.) in Low Gain Mode

LNA OUT Port Return Loss over swept Frequency (& Temp.) in Low Gain Mode

Output P1dB Compression over swept Frequency (& Temp.) in Low Gain Mode

9

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>RX Low Gain mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (& Temp.) in Low Gain Mode

ANT Port Return Loss over swept Frequency (& Temp.) in Low Gain Mode

OIP3 over swept Frequency (& Temp.) with P_{OUT}/Tone = -30 dBm & 10 MHz tone spacing in in Low Gain Mode

Noise Figure over swept Frequency (& Temp.) in Low Gain Mode

LNA OUT Port Return Loss over swept Frequency (& Temp.) in Low Gain Mode

Output P1dB Compression over swept Frequency (& Temp.) in Low Gain Mode

10

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

<u>RX Low Gain mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (& Temp.) in Low Gain Mode

ANT Port Return Loss over swept Frequency (& Temp.) in Low Gain Mode

OIP3 over swept Frequency (& Temp.) with P_{OUT} /Tone = -30 dBm & 10 MHz tone spacing in Low Gain Mode

Noise Figure over swept Frequency (& Temp.) in Low Gain Mode

LNA OUT Port Return Loss over swept Frequency (& Temp.) in Low Gain Mode

Output P1dB Compression over swept Frequency (& Temp.) in Low Gain Mode

11

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>TX mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

Switch Insertion Loss over swept Frequency (& Temp.)

ANT Port Return Loss over swept Frequency (& Temp.)

ANT to LNA OUT Isolation over swept Frequency (& Temp.)

TX Port Return Loss over swept Frequency (& Temp.)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>TX mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

Switch Insertion Loss over swept Frequency (& Temp.)

ANT Port Return Loss over swept Frequency (& Temp.)

ANT to LNA OUT Isolation over swept Frequency (& Temp.)

TX Port Return Loss over swept Frequency (& Temp.)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<u>TX mode</u>. Typical Performance Curves $P_{IN} = -30 \text{ dBm}, V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

Switch Insertion Loss over swept Frequency (& Temp.)

ANT Port Return Loss over swept Frequency (& Temp.)

ANT to LNA OUT Isolation over swept Frequency (& Temp.)

TX Port Return Loss over swept Frequency (& Temp.)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance Curves $V_{CC} = V_{DD} = 5 \text{ V}, T_C = +25^{\circ}\text{C}, Z_0 = 50 \Omega$ (unless otherwise indicated)

ANT to LOAD Input Power Derating Curve @ 2GHz

MAMF-011150

Rev. V2

Lead-Free 6 mm 40-Lead HQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements in accordance to JEDEC J-STD-020D. Plating is NiPdAuAg over Copper

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁷

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.