## Features

- High Power SPDT Switch and 2-Stage LNA
- Broadband: 1-6 GHz
- No External Matching Components Required
- RX Mode Gain:
35.5 dB @ 2.5 GHz
34.0 dB @ 3.75 GHz
33.8 dB @ 4.7 GHz
- RX Mode Noise Figure:
$1.1 \mathrm{~dB} @ 2.5 \mathrm{GHz}$
$1.2 \mathrm{~dB} @ 3.75 \mathrm{GHz}$
$1.4 \mathrm{~dB} @ 4.7 \mathrm{GHz}$
- TX Mode at 2-5 GHz:

Insertion Loss: 0.35 dB
P0.1dB: 41 dBm

- Single $5 \vee$ Supply
- Low DC Current: 80 mA in RX Mode
- Integrated Control Circuitry with 1.8 V Logic
- Lead-Free 3 mm 16 Lead QFN Package
- RoHS* Compliant


## Applications

- 5G Massive MIMO
- Wireless Infrastructure
- TDD-based communication systems


## Description

The MAMF-011149 is a compact surface mount, highly integrated high power SPDT switch and 2stage low noise amplifier (LNA) module. It includes an antenna switch and a LNA in a compact 3 mm QFN package. All the bias circuitry and matching components are internal to the module.

This module operates from 1-6 GHz and features high power handling, low noise figure, high linearity and low power consumption. The module requires a single 5 V supply and the $\mathrm{T} / \mathrm{R}$ switch is 1.8 V CMOS compatible.

Ordering Information ${ }^{1,2}$

| Part Number | Package |
| :---: | :---: |
| MAMF-011149-TR1000 | 1K reel |
| MAMF-011149-001SMB | Sample Board |

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

## Functional Block



## Pin Configuration ${ }^{3}$

| Pin \# | Pin Name | Description |
| :---: | :---: | :---: |
| $1,2,3,4,6,7,12$ | N/C | Internally No Connect |
| 5 | ANT | Antenna Port |
| 8 | V $_{\text {DD }}$ | Supply Voltage |
| $9,10,14,15$ | GND | Ground |
| 11 | RXOUT | RX Output Port |
| 13 | T/R | Logic Signaling Pin |
| 16 | TERM | Termination Port |
| 17 | Paddle $^{4}$ | Ground |

3. MACOM recommends connecting N/C pins to ground.
4. The exposed pad centered on the package bottom must be connected to PCB ground with low electrical and thermal resistances.
[^0]AC Electrical Specifications (RX Mode): $P_{\mathrm{IN}}=\mathbf{- 3 0} \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gain | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz | dB | $\begin{aligned} & 32 \\ & 32 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35.5 \\ & 34.0 \\ & 33.8 \end{aligned}$ | - |
| Input IP3 | $P_{\text {in }} /$ tone $=-30 \mathrm{dBm}$, Tone Delta $=2 \mathrm{MHz}$, <br> ANT to RXOUT, 2.5 GHz <br> ANT to RXOUT, 3.75 GHz <br> ANT to RXOUT, 4.7 GHz | dBm | - | $\begin{aligned} & -4.3 \\ & -4.0 \\ & -5.0 \end{aligned}$ | - |
| Input P1dB | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz | dBm | - | $\begin{aligned} & \hline-17.5 \\ & -16.9 \\ & -16.5 \end{aligned}$ | - |
| Noise Figure | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz | dB | - | 1.1 1.2 1.4 | - |
| ANT Port Return Loss | ANT Port, 2.5 GHz ANT Port, 3.75 GHz ANT Port, 4.7 GHz | dB | - | $\begin{aligned} & 21 \\ & 22 \\ & 17 \end{aligned}$ | - |
| RXOUT Port Return Loss | RXOUT Port, 2.5 GHz RXOUT Port, 3.75 GHz RXOUT Port, 4.7 GHz | dB | - | $\begin{aligned} & 21 \\ & 22 \\ & 18 \end{aligned}$ | - |
| Reverse Isolation | RXOUT to ANT, 2.5 GHz RXOUT to ANT, 3.75 GHz RXOUT to ANT, 4.7 GHz | dB | - | $\begin{aligned} & 50 \\ & 50 \\ & 48 \end{aligned}$ | - |

AC Electrical Specifications (TX Mode): $\mathrm{P}_{\mathrm{IN}}=\mathbf{- 3 0} \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+\mathbf{+ 2}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=\mathbf{5 0 \Omega}$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss | ANT to TERM, 2.5 GHz ANT to TERM, 3.75 GHz ANT to TERM, 4.7 GHz | dB | - | $\begin{aligned} & 0.30 \\ & 0.35 \\ & 0.40 \end{aligned}$ | 1 |
| P0.1dB Compression Point | $2 \mu \mathrm{~s}$ pulse width, $10 \%$ duty cycle, ANT to TERM, 2.5 GHz , ANT to TERM, 3.75 GHz | dBm | - | $\begin{aligned} & 41 \\ & 41 \end{aligned}$ | - |
| ANT Port Return Loss | ANT Port, 2.5 GHz ANT Port, 3.75 GHz ANT Port, 4.7 GHz | dB | - | 27 25 23 | - |
| TERM Port Return Loss | TERM Port, 2.5 GHz TERM Port, 3.75 GHz TERM Port, 4.7 GHz | dB | - | 28 25 23 | - |
| ANT - RXOUT Isolation | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz | dB | - | $\begin{aligned} & 56 \\ & 53 \\ & 49 \end{aligned}$ | - |
| ANT Port Input Power | ANT Port, $2.5 \mathrm{GHz}, \mathrm{CW}, \mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$ <br> ANT Port, 2.5 GHz, LTE (10dB PAR), $\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$ | dBm | - | $\begin{aligned} & 39 \\ & 36 \end{aligned}$ | - |

Transient Electrical Specifications: Freq. $=2.5 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=-30 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $Z_{0}=50 \Omega$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T/R Gain Settling Time | ANT to RXOUT gain settling time within <br> 0.3 dB of final value after T/R command | $\mu \mathrm{s}$ | - | 0.3 | - |
| T/R Insertion Loss Settling Time | ANT to TERM path insertion loss settling <br> time within 0.3 dB of final value after <br> T/R command | $\mu \mathrm{s}$ | - | 0.3 | - |
| Power on Gain Settling Time | ANT to RXOUT gain settling time within <br> 0.5 dB of final value after DC power on | ms | - | 1 | - |
| Power on Insertion Loss Settling Time | ANT to TERM settling time within 0.5 dB <br> of final value after DC power on | ms | - | 1 | - |

DC Electrical Specifications: $\mathrm{T}_{\mathrm{C}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | - | V | 4.75 | 5 | 5.25 |
| Amplifier Bias Current | RX Mode | mA | - | 80 | - |
| T/R Control Voltage | TX Mode | V | - | 1.8 | - |
|  | RX Mode, Logic High <br> TX Mode, Logic Low | $\mu \mathrm{A}$ | - | 40 | - |

## Control Truth Table

| T/R Control |  |
| :---: | :---: |
| RX Mode | Logic High |
| TX Mode | Logic Low or Open |

Absolute Maximum Ratings ${ }^{5,6}$

| Parameter | Absolute Maximum |
| :---: | :---: |
| Antenna Input Power ${ }^{7}$ Freq. $=2.5 \mathrm{GHz}$ : RX Mode TX Mode | 23 dBm LTE (10 dB PAR), 26 dBm CW 39 dBm LTE ( 10 dB PAR), 41 dBm CW |
| DC Voltages: <br> $V_{D D}$, ANT \& TERM T/R \& RXOUT | $\begin{gathered} -0.5 \text { to }+5.5 \mathrm{~V} \\ -0.5 \text { to }+2.75 \mathrm{~V} \end{gathered}$ |
| Junction Temperature: $\begin{aligned} & \text { RX Mode }{ }^{8,10} \\ & \text { TX Mode }{ }^{8,10} \\ & \text { TX Mode } \end{aligned}$ | $\begin{aligned} & +150^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & +140^{\circ} \mathrm{C} \end{aligned}$ |
| Operating Temperature ${ }^{9}$ | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Single event, up to 10 seconds duration.
8. Operating at nominal conditions with $T_{J} \leq+150^{\circ} \mathrm{C}$ ( RX Mode) and $\mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$ (TX Mode) will ensure MTTF $\gg 1 \times 10^{6}$ hours.
9. Operating/Case temperature $\left(T_{C}\right)$ is the temperature of the exposed paddle.
10. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta_{J C} * P_{\text {DISS }}$ where $P_{D I S S}$ is the total DC \& RF dissipated power.

- RX Mode: Typical thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=33.4^{\circ} \mathrm{C} / \mathrm{W}$.
- TX Mode: Typical thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=15.3^{\circ} \mathrm{C} / \mathrm{W}$.


## Handling Procedures

Please observe the following precautions to avoid damage:

## Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

## Power Supplies

De-coupling capacitors should be placed at the $\mathrm{V}_{\mathrm{DD}}$ supply pin to minimize noise and fast transients. Supply voltage change or transients should have a slew rate smaller than $1 \mathrm{~V} / 10 \mu \mathrm{~s}$. In addition, all control pins should remain at $0 \mathrm{~V}(+/-0.3 \mathrm{~V})$ and no RF power should be applied while the supply voltage ramps or while it returns to zero.

| Parameter | Rating | Standard |
| :---: | :---: | :---: |
| Human Body <br> Model (HBM) | 1000 V <br> (Class 1C) | ESDA/JEDEC <br> JS-001 |
| Charged Device <br> Model (CDM) | 1000 V <br> (Class C3) | ESDA/JEDEC <br> JS-002 |

## Sample Board Schematic



## Sample Board PCB Layout



- Material: Rogers 4003C
- Dielectric thickness: 0.203 mm
- Track/Gap: 0.394/0.25 mm
- Finished copper thickness: $44 \mu \mathrm{~m}+/-10 \mu \mathrm{~m}$
- Finish both sides: $0.075 \mu \mathrm{~m}$ gold over $4.5 \mu \mathrm{~m}$ nickel
- Further layout information available on request


## Parts List

| Part | Value | Case style |
| :---: | :---: | :---: |
| C 1 | $10 \mu \mathrm{~F}$ | 0603 |
| C 2 | 5 pF | 0402 |
| C 3 | 470 pF | 0402 |
| C 4 | 10 nF | 0402 |
| R1 | $1 \mathrm{k} \Omega$ | 0402 |
| R2 | $100 \Omega$ | 0402 |

Recommended Thermal Land Pattern


- 13 Ground Vias
- 0.2 mm Diameter, $1 / 2 \mathrm{oz}$. Copper


## Typical Performance Curves:

## $P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

## ANT to RXOUT Gain ${ }^{11}$ - RX Mode



ANT Port Return Loss - RX Mode


RXOUT Port Return Loss - RX Mode


ANT to RXOUT Gain ${ }^{11}$ - RX Mode


ANT Port Return Loss - RX Mode


RXOUT Port Return Loss - RX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

## Typical Performance Curves:

$P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

## ANT to RXOUT Noise Figure ${ }^{11}$ - RX Mode



ANT to RXOUT Port Reverse Isolation ${ }^{11}$ - RX Mode


ANT to TERM Port Switch Isolation ${ }^{11}$ - RX Mode


Supply Current - RX Mode


ANT to RXOUT Port P1dB - RX Mode


ANT to RXOUT Port Input IP3 - RX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

## Typical Performance Curves

## $P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)



ANT Port Return Loss - TX Mode


TERM Port Return Loss - TX Mode


ANT to TERM Switch Insertion Loss ${ }^{11}$ - TX Mode


ANT Port Return Loss - TX Mode


TERM Port Return Loss - TX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

Rev. V2

## Typical Performance Curves

$P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

ANT to TERM Port Switch Compression Characteristic ${ }^{12}$ at 2.5 GHz - TX mode


ANT to TERM Port Switch Compression Characteristic $^{12}$ at 3.75 GHz - TX mode

12. Measured with $2 \mu$ s pulse width, $10 \%$ duty cycle. RF trace and connector losses are de-embedded.

## Lead-Free 3 mm 16-Lead QFN ${ }^{\dagger}$



[^1]MAMF-011149
Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.


[^0]:    * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]:    ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
    Meets JEDEC moisture sensitivity level 1 requirements in accordance to JEDEC J-STD-020D.
    Plating is NiPdAu over Copper

