Features

- 2-Stage LNA and High Power Switch
- Bypass Switch on Second LNA Stage
- High RF Input Power:

160 W CW @ +105º , 2.6 GHz

- Noise Figure:
1.2 dB @ 2.6 GHz
$1.5 \mathrm{~dB} @ 3.5 \mathrm{GHz}$
1.8 dB @ 4.5 GHz
- Gain, High Gain Mode:

34 dB @ 2.6 GHz
33 dB @ 3.5 GHz
32 dB @ 4.5 GHz

- Output IP3: 35 dBm (High Gain Mode)
- Lead-Free 5 mm 32-lead HQFN
- Integrated ESD Protection
- RoHS* Compliant

Applications

- High Power TDD 4G \& 5G Basestation
- Wireless Infrastructure
- TDD-based Communication System

Description

The MAMF-011139 is a compact surface mount module containing a PIN diode switch and two low noise amplifiers assembled in a 5 mm 32-lead HQFN plastic package.

Some DC bias and matching SMT components are required for PIN switch operation and optimized noise figure. The second LNA, LNA2, may be bypassed through an integrated switch. LNA2 is powered down when bypassed.

Ordering Information ${ }^{1,2}$

Part Number	Package
MAMF-011139-TR1000	1K Reel
MAMF-011139-001SMB	Sample Board

[^0]
Functional Schematic

Pin Configuration ${ }^{3,4}$

Pin \#	Pin Name	Description
$1-4,6-10,12,14$, $16,22,23,25$, 27,32	N/C 3	No Connection
5	RF $_{\text {IN }}$	Common RF Input / Bias
11	RX	RX Switch Output
$13,18,21,29,30$	GND	RF Ground
15	LNA1 ${ }_{\text {IN }}$	LNA1 Input
17	EN	LNA1/2 Enable
19	V $_{\text {DD }}$	Drain Supply
24	RF $_{\text {OUT }}$	LNA2 Output
26	BP $_{\text {CONTROL }}$	Bypass Switch Control
28	V $_{\text {C }}$	RX/TX Switch Control
31	LOAD $^{\text {TX Switch Output }}$	

3. MACOM recommends connecting unused package pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.
[^1]Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{BP}_{\text {control }}=3.3 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}$ See RX/TX Switch Bias Table

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Input RF Power @ $+105^{\circ} \mathrm{C}$ RF ${ }_{\text {IN }}$ - LOAD 200 mA Bias Current	2.6 GHz 3.5 GHz 4.5 GHz	W	-	$\begin{aligned} & 160 \\ & 140 \\ & 125 \end{aligned}$	-
Input RF Power @ $+105^{\circ} \mathrm{C}$ RF ${ }_{\text {IN }}$ - LOAD 100 mA Bias Current	2.6 GHz 3.5 GHz 4.5 GHz	W	-	$\begin{aligned} & 120 \\ & 105 \\ & 95 \end{aligned}$	-
Switch Insertion Loss $R F_{\text {IN }}-\text { LOAD }$	$\begin{aligned} & 2.6 \mathrm{GHz} \\ & 3.5 \mathrm{GHz} \\ & 4.5 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.6 \end{aligned}$	$\overline{0.7}$
Noise Figure in Both Modes RF ${ }_{\text {IN }}$ - RF $_{\text {out }}$	2.6 GHz 3.5 GHz 4.5 GHz	dB	-	$\begin{aligned} & 1.2 \\ & 1.5 \\ & 1.8 \end{aligned}$	$\overline{1.9}$
Input Return Loss in Both Modes RF $_{\text {IN }}$. FFout $^{\text {on }}$	2.6 GHz 3.5 GHz 4.5 GHz	dB	-	12 22 12	-
Output Return Loss in Both Modes $R F_{\text {IN }}$. $\mathrm{RF}_{\text {OUT }}$	$\begin{aligned} & 2.6 \mathrm{GHz} \mathrm{HG} / \mathrm{LG} \\ & 3.5 \mathrm{GHz} \mathrm{HG} / \mathrm{LG} \\ & 4.5 \mathrm{GHz} \mathrm{HG} / \mathrm{LG} \end{aligned}$	dB	-	$\begin{aligned} & 10 / 17 \\ & 15 / 13 \\ & 15 / 17 \end{aligned}$	-
Gain in High Gain Mode RF $_{\text {IN }}$. RFout	$\begin{aligned} & 2.6 \mathrm{GHz} \\ & 3.5 \mathrm{GHz} \\ & 4.5 \mathrm{GHz} \end{aligned}$	dB	$2 \overline{-7}$	$\begin{aligned} & 34.1 \\ & 32.5 \\ & 32.0 \end{aligned}$	-
Gain in Low Gain Mode $\mathrm{RF}_{\text {In }}$. $\mathrm{RF}_{\text {out }}$	2.6 GHz 3.5 GHz 4.5 GHz	dB	-	$\begin{aligned} & \hline 20.1 \\ & 19.3 \\ & 18.0 \end{aligned}$	-
Isolation $R F_{\mathbb{I N}_{N}}-\mathrm{LNA} 1_{\mathbb{N}}$	$\begin{gathered} \hline \text { Switch State }=\mathrm{RF}_{\mathbb{I N}}-\mathrm{LOAD} \\ 2.6 \mathrm{GHz} \\ 3.5 \mathrm{GHz} \\ 4.5 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & 46 \\ & 47 \\ & 45 \end{aligned}$	-
Output IP3 in High Gain Mode RF $_{\text {IN }}$. FF $_{\text {out }}$	$P_{\text {OUt }}=+10 \mathrm{dBm}$ per tone, 11 MHz spacing	dBm	-	35	-
Output IP3 in Low Gain Mode RFin . RFout	$P_{\text {OUt }}=+3 \mathrm{dBm}$ per tone, 11 MHz spacing	dBm	-	29.5	-
Output P1dB in High Gain Mode	$\mathrm{RF}_{\text {IN }}$. $\mathrm{RF}_{\text {OUT }}$	dBm	-	19	-
Output P1dB in Low Gain Mode	RFin - $\mathrm{RF}_{\text {OUT }}$	dBm	-	15.3	-
$V_{\text {DD }}$ Bias Current	High Gain Mode Low Gain Mode	mA	-	$\begin{gathered} 108 \\ 44 \end{gathered}$	-
Control Voltage	Logic High Logic Low	V	$\begin{gathered} 1.2 \\ 0 \end{gathered}$	-	$\begin{gathered} 3.45 \\ 0.6 \end{gathered}$
Logic Input Current	Logic High Logic Low	$\mu \mathrm{A}$	-	$\begin{gathered} 60 \\ 0.01 \end{gathered}$	-

RX/TX Switch Bias Table

$\mathbf{R F}_{\text {IN }}$ - LOAD	RF $_{\text {IN }}-\mathbf{R F}_{\text {OUT }}$	LOAD	$\mathbf{R X}$	$\mathbf{V c}$	$\mathbf{R F}_{\text {IN }}$
ON	OFF	$0 \vee(-100 \mathrm{~mA})$	$+48 \mathrm{~V}(10 \mathrm{~mA})$	$0 \vee(-10 \mathrm{~mA})$	$5 \mathrm{~V}(100 \mathrm{~mA})$
OFF	ON	$+48 \mathrm{~V}(0 \mathrm{~mA})$	$0 \vee(-100 \mathrm{~mA})$	$+48 \mathrm{~V}(0 \mathrm{~mA})$	$5 \mathrm{~V}(100 \mathrm{~mA})$

LNA Logic Truth Table ${ }^{5}$

Mode	EN	BP control	Note
High Gain mode	Low	Low	LNA1 and LNA2 ON, Bypass Switch OFF
Low Gain mode	Low	High	LNA1 ON, LNA2 OFF, Bypass Switch ON
High Isolation mode	High	Low	LNA1 and LNA2 OFF, Bypass Switch OFF
Low Isolation mode	High	High	LNA1 and LNA2 OFF, Bypass Switch ON

5. If V_{DD} pin is used to turn the LNAs ON and OFF, the logic pins need to stay at Logic Low during V_{DD} ramp up and ramp down.

Absolute Maximum Ratings ${ }^{6,7,8}$

Parameter	Absolute Maximum
RF Input Power RF $_{\text {IN }}-R X$ LNA $_{1 N}-\mathrm{RF}_{\text {out }}$ RF $_{\text {IN }}-$ LOAD	$49 \mathrm{dBm} @ 85^{\circ} \mathrm{C}$ 19 dBm
Switch Reverse Voltage (RF \& DC)	See Power Derating Curves

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.
8. Operating at nominal conditions with $T_{J} \leq+150^{\circ} \mathrm{C}(\mathrm{LNA})$ and $\mathrm{T}_{J} \leq+175^{\circ} \mathrm{C}$ (Switch) will ensure MTTF $\gg 1 \times 10^{6}$ hours.
9. LNA Junction Temperature $\left(T_{J}\right)=T_{C}+\theta_{J C} *\left(P_{D I S S}\right)$ where $P_{D I S S}$ is the total DC \& RF dissipated power.

- LNA: Typical thermal resistance $\left(\Theta_{\mathrm{JC}}\right)=33.4^{\circ} \mathrm{C} / \mathrm{W}$.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged

Parameter	Rating	Standard
Human Body Model (HBM)	Class 1B	ESDA/JEDEC JS-001
Charged Device Model (CDM)	Class C3	ESDA/JEDEC JS-002

Typical Performance Curves

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

ANT to LOAD Input Power Derating Curve @ 2.7GHz

ANT to LOAD Input Power Derating Curve over Frequency @ $105^{\circ} \mathrm{C}$ Case Temp

ANT to LOAD Input Power Derating Curve over Frequency @ $85^{\circ} \mathrm{C}$ Case Temp

ANT to LOAD Input Power Derating Curve over Frequency @ $120^{\circ} \mathrm{C}$ Case Temp

ANT to LOAD Input Power Derating Curve over Reverse Bias Voltage @ 2.7GHz

PCB Layout

Parts List

Part	Value	Case Style (Min Rating)
$\mathrm{C} 1, \mathrm{C} 2$	6.8 pF	$0603(\geq 250 \mathrm{~V})$
C 3	10 pF	$0402(\geq 100 \mathrm{~V})$
C5	15 pF	0603
C4,C14	$0.1 \mu \mathrm{~F}$	0402
$\mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9$	15 pF	$0402(\geq 100 \mathrm{~V})$
C10	4.7 pF	0402
C12,C13,C15,C16	DNP	0402
C21	0.4 pF	0402
L1,L2,L3,L5	33 nH	0402
L4	Jumper	0402
R1	40.2Ω	$2512(\geq 1 \mathrm{~W})$
R2	0Ω	1206
R3	$4.7 \mathrm{k} \Omega$	$2512(\geq 1 \mathrm{~W})$
R4	0Ω	0402
R5	100Ω	0402

Application Schematic

Typical Performance Curves

$\mathrm{P}_{\text {IN }}=-35 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Frequency (\& Temp.) in High Gain Mode

RFin Port Return Loss over swept Frequency (\& Temp.) in High Gain Mode

RFout Port Return Loss over swept Frequency (\& Temp.) in High Gain Mode

LNA Gain over swept Frequency (\& Temp.) in Low Gain Mode

RFIN ${ }_{\text {IN }}$ Port Return Loss over swept Frequency (\& Temp.) in Low Gain Mode

RFout Port Return Loss over swept Frequency (\& Temp.) in Low Gain Mode

Typical Performance Curves

$P_{\text {IN }}=-35 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

LNA Noise Figure over swept Frequency (\& Temp.) in High Gain Mode

LNA1 ${ }_{\text {IN }}$ to RFout Isolation over swept Frequency (\& Temp.) in High Gain Mode

$R F_{I N}$ to LNA1 ${ }_{\text {IN }}$ Isolation over swept Frequency (\& Temp.)

LNA Noise Figure over swept Frequency (\& Temp.) in Low Gain Mode

LNA1 ${ }_{\text {IN }}$ to $R F_{\text {out }}$ Isolation over swept Frequency (\& Temp.) in Low Gain Mode

Typical Performance Curves

$\mathrm{P}_{\text {IN }}=-35 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

LNA Gain over swept Output Power (\& Temp.) at 3.5 GHz in High Gain Mode

OIP3 over swept Frequency (\& Temp.) with PiN $/$ Tone $=-35 \mathrm{dBm} \& 10 \mathrm{MHz}$ tone spacing in HGM.

OIP3 over swept Frequency (\& Temp.) with $\mathrm{P}_{\text {out }} /$ Tone $=10 \mathrm{dBm} \& 11 \mathrm{MHz}$ tone spacing in HGM.

LNA Gain over swept Output Power (\& Temp.) at 3.5 GHz in Low Gain Mode

OIP3 over swept Frequency (\& Temp.) with PiN $/$ Tone $=-25 \mathrm{dBm} \& 10 \mathrm{MHz}$ tone spacing in LGM.

OIP3 over swept Frequency (\& Temp.) with $\mathrm{P}_{\mathrm{out}} /$ Tone $=3 \mathrm{dBm} \& 11 \mathrm{MHz}$ tone spacing in LGM.

Typical Performance Curves

$P_{\text {IN }}=-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

Switch Insertion Loss over swept Frequency (\&
Temp.)

RF ${ }_{\text {IN }}$ Port Return Loss over swept Frequency (\& Temp.)

$R F_{I N}$ to $R F_{\text {out }}$ Isolation over swept Frequency (\& Temp.)

LOAD Port Return Loss over swept Frequency (\& Temp.)

Rev. V1

Lead-Free 5 mm 32-Lead HQFN ${ }^{\dagger}$

ALL DIMENSIONS SHOWN AS in[mm]
\dagger^{\dagger} Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grRFIN no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRRFINY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHRFINABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

[^0]: 1. Reference Application Note M513 for reel size information.
 2. All sample boards include 3 loose parts.
[^1]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

