Features

- 802.11a,n,ac Applications
- $0.9 \mathrm{~dB} \mathrm{~T}_{\mathrm{x}}$ Insertion Loss
- $19 \mathrm{~dB} R_{x}$ Isolation
- $12 \mathrm{~dB} R_{\mathrm{x}}$ Gain
- 2.2 dB Noise Figure
- 10 mA Current
- -40 dB EVM @ 23 dBm Input
(802.11ac $80 \mathrm{MHz} / 256$ QAM)
- Lead Free 2 mm 12-lead STQFN package
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible
- Alternate Pin-Out of the MAMF-010614

Description

The MAMF-011038 is a multi-function MMIC assembled in a lead-free 2 mm 12-lead STQFN plastic package that includes a SPDT switch and LNA with bypass mode for the R_{x} path.

This multi-function device delivers high isolation between T_{x} and R_{x} paths, low T_{x} insertion loss and a high gain, low noise R_{x} path.

The MAMF-011038 is ideally suited for use on the front end of WLAN 802.11a,n,ac modules where small size is critical.

Ordering Information ${ }^{1,2}$

Part Number	Package
MAMF-011038-TR3000	3000 piece reel
MAMF-011038-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration ${ }^{3}$

Pin No.	Function	Description
1	V $_{\mathrm{DD}}$	Drain Voltage Supply
2	$\mathrm{~N} / \mathrm{C}$	No Connection
3	V 1	Control 1
4	RFC	RF Common
5	N/C	No Connection
6	$\mathrm{~T}_{\mathrm{X}}$	T $_{\mathrm{x}}$ Port
7	V2	Control 2
8	N/C	No Connection
9	N/C	No Connection
10	N/C	No Connection
11	N/C	No Connection
12	R_{X}	Rx Port
13	Pad 4	Ground

3. MACOM recommends connecting unused package pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF and DC ground.
[^0]Electrical Specifications: Freq. $=5.25-5.825 \mathrm{GHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0 / 2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Isolation	RFC to T_{x} RFC to R_{X} (Gain Mode) RFC to R_{X} (Bypass Mode)	dB	-	$\begin{aligned} & 19 \\ & 19 \\ & 19 \end{aligned}$	-
TX Insertion Loss	RFC to T_{X}	dB	-	0.9	1.2
T ${ }_{\text {X }}$ Input / Output Return Loss	RFC to T_{X}	dB	-	22	-
Tx Input P0.1dB	Tx Path On	dBm	-	31	-
Tx EVM	$\begin{gathered} \mathrm{P}_{\text {IN }}=+23 \mathrm{dBm}, \\ 802.11 \mathrm{AC} 80 \mathrm{MHz} / 256 \text { QAM } \end{gathered}$	dB	-	-42	-
R_{X} Gain	RFC to R_{x}, Gain Mode	dB	10	12	-
R_{x} Insertion Loss	RFC to Rx, Bypass Mode	dB	-	6	7.5
R_{X} Input / Output Return Loss	RFC to R_{X}, Gain Mode	dB	-	10	-
R_{X} Noise Figure	Gain Mode	dB	-	2.2	-
R_{x} Input IP3	Gain Mode	dBm	-	10	-
R_{x} Input P0.1dB	Bypass Mode	dBm	-	10	-
R_{x} Input P1dB	Gain Mode	dBm	-5	-3	-
R_{x} EVM	$\mathrm{P}_{\mathrm{IN}}=-15 \mathrm{dBm}$, Gain Mode	dB	-	-46	-
Quiescent Current	No RF, Gain Mode, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	mA	-	10	12
Control Current	All States except High Gain High Gain State	$\mu \mathrm{A}$	-	$\begin{gathered} 10 \\ 330 \end{gathered}$	-

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Input Power	
R_{X} Gain Mode	0 dBm
R_{X} Bypass Mode	20 dBm
$\mathrm{T}_{\mathrm{X}}, 5.0 \mathrm{~V}_{\mathrm{C}}, \mathrm{RFC}-\mathrm{T}_{\mathrm{X}}$	35 dBm CW
$\mathrm{T}_{\mathrm{X}}, 3.3 \mathrm{~V}_{\mathrm{C}}, \mathrm{RFC}-\mathrm{T}_{\mathrm{X}}$	33 dBm CW
V_{DD}	5 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.

Truth Table ${ }^{7,8}$

Control V1	Control V2	RFC-R \mathbf{x}	RFC $-\mathbf{T}_{\mathbf{x}}$
Low	Low	Bypass Mode	Off
Hi	Low	Gain Mode	Off
Low	Hi	Off	On

7. Differential voltage, V (state Low) - V (state Hi), must be +2.7 V minimum and must not exceed +5.0 V .
8. Low $=0 \pm 0.3 \mathrm{~V}, \mathrm{Hi}=+2.7 \mathrm{~V}$ to +5.0 V .

Functional Schematic

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Lead-Free 2 mm STQFN-12LD -0.4 mm Pitch ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is $\mathrm{Ni} / \mathrm{Pd} /$ Au over Copper.

Typical Performance Curves:

Rx to RFC

RFC to R_{X} Gain

RFC to T_{X}

T_{X} to RFC

T_{X} Insertion Path

Typical Performance Curves:

R_{X} Port Return Loss

RFC Port Return Loss

T_{X} Isolation from R_{X}

T_{X} Port Return Loss

R_{X} Noise Figure, Gain Mode

Typical Performance Curves:

R_{X} Input IP3, Gain Mode @ $-40^{\circ} \mathrm{C}$

Rx Input IP3, Gain Mode @ $+85^{\circ} \mathrm{C}$

R_{X} Input IP3, Bypass Mode @ +25 ${ }^{\circ} \mathrm{C}$

R_{X} Input IP3, Bypass Mode @ $-40^{\circ} \mathrm{C}$

R_{x} Input IP3, Bypass Mode @ $+85^{\circ} \mathrm{C}$

Typical Performance Curves:

System Compensated EVM, 802.11AC 80 MHz / 256 QAM

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

