

Rev. V2

Features

- Suitable for Linear and Saturated Applications
- CW and Pulsed Operation: 2 W Output Power
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

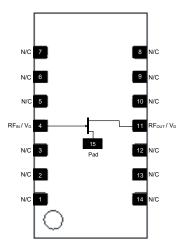
The MAGX-100027-002S0P is a GaN on Si HEMT D-mode transistor suitable for DC - 2.7 GHz frequency operation. The device supports both CW and pulsed operation with peak output power levels to 2 W (33 dBm) in a plastic package.

The MAGX-100027-002S0P is ideally suited for military radio communications, digital cellular infrastructure, RF energy, avionics, test instrumentation and RADAR.

Typical Performance:

 V_{DS} = 50 V, I_{DQ} = 15 mA, T_C = 25°C. Measured under pulsed load-pull at 2.5 dB Compression, 100 µs pulse width, 10% duty cycle.

Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
0.9	35	21.6	67.3
1.4	35.2	21.4	64.7
2.0	35.1	21.1	62
2.7	35.2	21	60.1


- 1. Load impedance tuned for maximum output power.
- 2. Load impedance tuned for maximum drain efficiency.

Ordering Information

Part Number	Package
MAGX-100027-002S0P	Bulk Quantity
MAGX-100027-002STP	Tape and Reel
MAGX-1A0027-002S0P	Sample Board

Functional Schematic

Pin Configuration

Pin Number	Pin Name	Function
1 - 3	NC	No Connection
4	RF _{IN} / V _G	RF Input / Gate
5 - 10	NC	No Connection
11	RF _{OUT} / V _D	RF Output / Drain
12 - 14	NC	No Connection
15	Pad ³	Ground / Source

3. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

RF Electrical Characteristics: T_C = 25°C, V_{DS} = 50 V, I_{DQ} = 15 mA Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed⁴, 2.5 GHz	Gss	-	20.1	-	dB
Power Gain	Pulsed ⁴ , 2.5 GHz, 2.5dB Gain Compression	G _{SAT}	ı	17.6	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 2.5 GHz, 2.5dB Gain Compression	ηѕат	-	58.5	1	%
Saturated Output Power	Pulsed ⁴ , 2.5 GHz, 2.5dB Gain Compression	Psat	-	34.7	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed ⁴ 2.5 GHz	ΔG	-	0.016	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ⁴ 2.5 GHz	ΔP2.5dB	-	0.009	-	dB/°C
Gain	Pulsed ⁴ , 2.5 GHz, P _{IN} = 15.2 dBm	G₽	-	18.7	-	dB
Drain Efficiency	$Pulsed^4$, 2.5 GHz, P_{IN} = 15.2 dBm	η	ı	54.3	ı	%
Input Return Loss	Pulsed ⁴ , 2.5 GHz, P_{IN} = 15.2 dBm	IRL	1	-7.7	-	dB
Ruggedness: Output Mismatch	All phase angles	All phase angles ψ VSWR = 10:1,		, No Da	mage	

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 50$ V, $I_{DQ} = 15$ mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 2.5 GHz, 2.5dB Gain Compression	G_{P}	16.5	17.4	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 2.5 GHz, 2.5dB Gain Compression	η	51.2	55.2	1	%
Saturated Output Power	Pulsed ⁴ , 2.5 GHz, 2.5 dB Gain Compression	P _{2.5dB}	34.3	34.7	-	dBm
Gain	Pulsed ⁴ , 2.5 GHz, P _{IN} = 15.2 dBm	GР	17.8	18.6	-	dB
Drain Efficiency	Pulsed ⁴ , 2.5 GHz, P _{IN} = 15.2 dBm	η	47	51	-	%
Input Return Loss	Pulsed ⁴ , 2.5 GHz, P _{IN} = 15.2 dBm	IRL	-	-9	-5	dB

^{4.} Pulse details: 100 µs pulse width, 10% Duty Cycle

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	-	-	0.4	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I_{GLK}	-	-	0.4	mA
Gate Threshold Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 0.4 \text{ mA}$	V _T	-	-2.0	-	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 15 \text{ mA}$	V_{GSQ}	-	-1.8	-	V
On Resistance	$V_{GS} = 2 V$, $I_D = 3 mA$	R _{on}	-	7.89	-	Ω
Maximum Drain Current	V _{DS} = 7 V, pulse width 300 μs	I _{D, MAX}	-	0.23	-	Α

Absolute Maximum Ratings 5,6,7,8,9

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	130 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	0.4 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +210°C		
Absolute Maximum Channel Temperature	+225°C		

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage $V_{DS} < 55 \text{ V}$ will ensure MTTF > 4 x 10^6 hours. Operating at nominal conditions with $T_{CH} \le 210^\circ \text{C}$ will ensure MTTF > 4 x 10^6 hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{[B+C/(T+273)]}$ where T is the channel temperature in degrees Celsius, A = 1.76, B = -33.83, and C = 23,476.

Thermal Characteristics 10

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{C} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	56.6	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	$V_{DS} = 50 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{C} = 225^{\circ}\text{C}$	$R_{\theta}(IR)$	45.3	°C/W

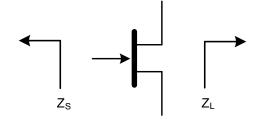
^{10.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0B, CDM Class C1 devices.

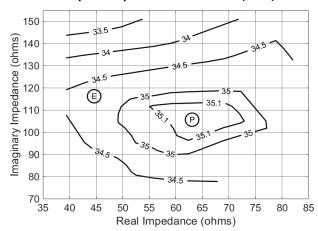

Rev. V2

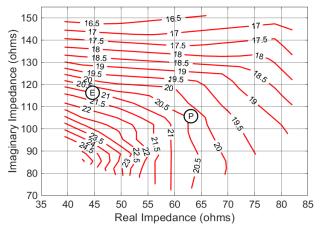
Pulsed⁴ Load-Pull Performance Reference Plane at Device Leads

		Maximum Output Power						
			V_{DS} = 50 V, I_{DQ} = 15 mA, T_{C} = 25°C, P2.5dB					
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)	
0.9	12.2 + j90.8	85.5 + j135.3	22.8	35	35	62.4	-3.7	
1.4	7.7 + j83.7	81.1 + j147.6	21.2	35.2	35.2	58.4	2.1	
2.0	5.2 + j58.7	82.9 + j132.2	20.6	35.1	35.1	57.8	-0.2	
2.7	7.4 + j44.6	60.8 + j101.9	20.1	35.2	35.2	54.9	4.6	

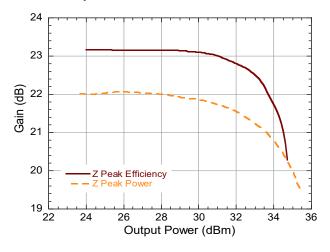
		Maximum Drain Efficiency						
			V _{DS} = 50 V, I _{DQ} = 15 mA, T _C = 25°C, P2.5dB					
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	P _{OUT} (W)	η₀ (%)	AM/PM (°)	
0.9	16.8 + j86.2	31.9 + j158.5	21.6	33.9	2.5	67.3	-3.1	
1.4	8.3 + j73.7	65.1 + j196.6	21.4	34	2.5	64.7	0.9	
2.0	5.9 + j50.6	78.8 + j165.5	21.1	34.6	2.9	62	-0.4	
2.7	4.6 + j39.3	39.8 + j117.4	21	34.5	2.8	60.1	0.1	

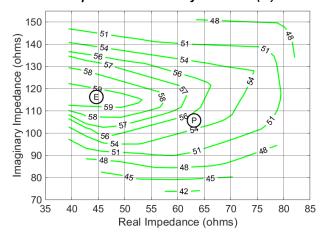
Impedance Reference

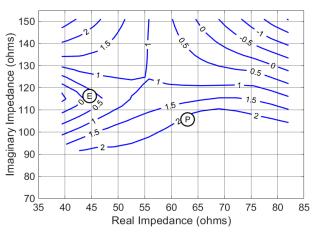

- Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.
- Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.
- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

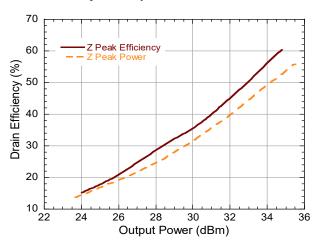

Rev. V2

Pulsed⁴ Load-Pull Performance @ 2.7 GHz

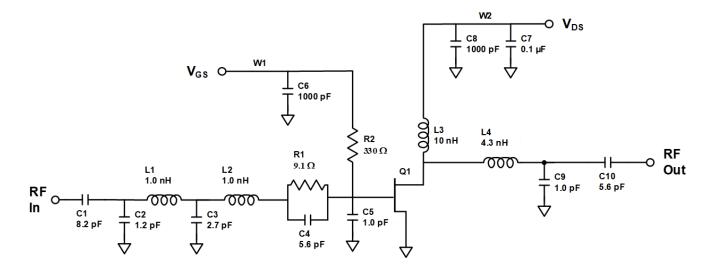

P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Gain Contours (dB)


Gain vs. Output Power


P2.5dB Loadpull Drain Efficiency Contours (%)

P2.5dB Loadpull AM/PM Contours (°)


Drain Efficiency vs. Output Power

Rev. V2

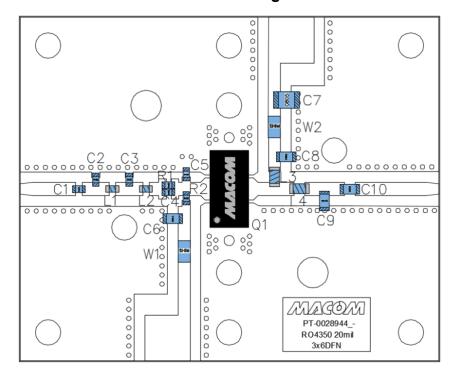
Evaluation Test Fixture and Recommended Tuning Solution 2.45 - 2.55 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

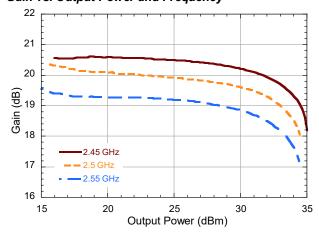
- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

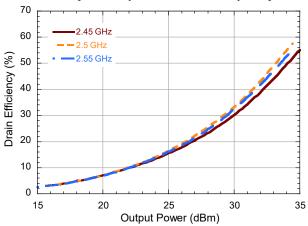

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

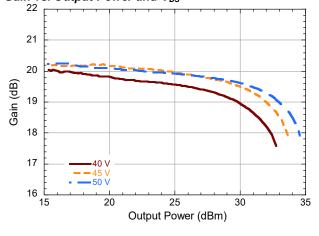
Rev. V2

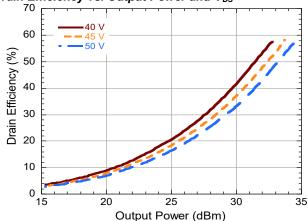
Evaluation Test Fixture and Recommended Tuning Solution 2.45 - 2.55 GHz

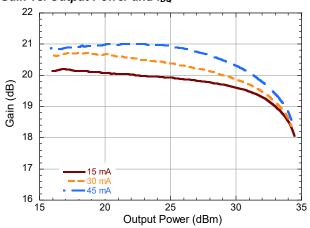

Reference Designator	Value	Tolerance	Manufacturer	Part Number		
C1	8.2 pF	+/- 0.1 pF	PPI	0402N8R2BW201		
C2	1.2 pF	+/- 0.1 pF	PPI	0402N1R2BW201		
C3	2.7 pF	+/- 0.1 pF	PPI	0402N2R7BW201		
C4	5.6 pF	+/- 0.1 pF	PPI	0402N5R6BW201		
C5	1.0 pF	+/- 0.1 pF	PPI	0402N1R0BW201		
C6, C8	1000 pF	+/- 5 %	TDK	C1608C0G1H102J080AE		
C7	0.1 µF	+/- 10 %	TDK	CGJ4J3X7T2D104K125AA		
C9	1.0 pF	+/- 0.1 pF	PPI	0603N1R0BW251		
C10	5.6 pF	+/- 0.1 pF	PPI	0603N5R6BW251		
R1	9.1 Ω	+/- 5 %	Panasonic	ERJ-2GEJ9R1X		
R2	330 Ω	+/- 1 %	Panasonic	ERJ-2RKF3300X		
L1, L2	1.0 nH	+/- 5 %	Coilcraft	0402HP-1N0XJL		
L3	10 nH	+/- 5 %	Coilcraft	0603CT-10NXJL		
L4	4.3 nH	+/- 5 %	Coilcraft	0603CT-4N3XJL		
W1, W2	-	-	-	Shim		
Q1	2 W	-	MACOM	MAGX-100027-002S0P		
PCB		Rogers RO43	4350, 20mil, 0.5oz Cu, Au Finish			

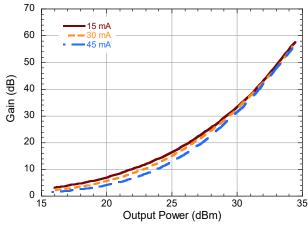

Rev. V2

Typical Performance Curves as Measured in the 2.45 - 2.55 GHz Evaluation Test Fixture: Pulsed⁴ 2.5 GHz, V_{DS} = 50 V, I_{DQ} = 15 mA, T_{C} = 25°C (Unless Otherwise Noted)


Gain vs. Output Power and Frequency

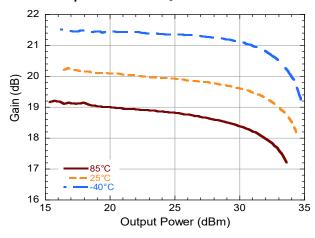

Drain Efficiency vs. Output Power and Frequency

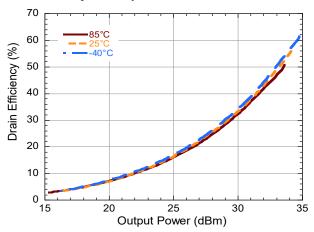

Gain vs. Output Power and V_{DS}


Drain Efficiency vs. Output Power and V_{DS}

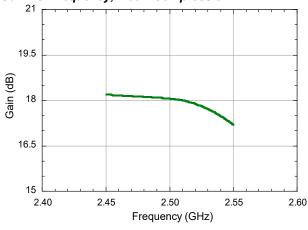
Gain vs. Output Power and IDQ

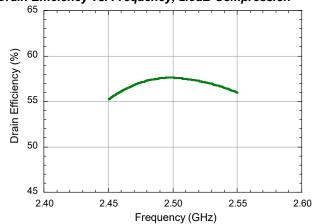
Drain Efficiency vs. Output Power and I_{DQ}

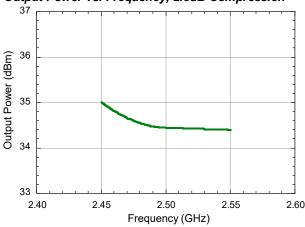



Rev. V2

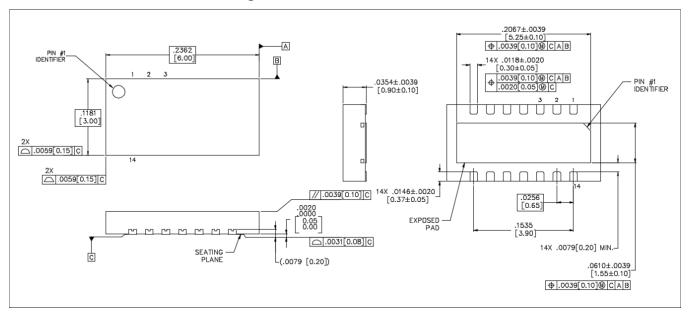
Typical Performance Curves as Measured in the 2.45 - 2.55 GHz Evaluation Test Fixture: Pulsed 4 2.5 GHz, V_{DS} = 50 V, I_{DQ} = 15 mA, T_C = 25°C (Unless Otherwise Noted)




Drain Efficiency vs. Output Power and T_c


Gain vs. Frequency, 2.5dB Compression

Drain Efficiency vs. Frequency, 2.5dB Compression


Output Power vs. Frequency, 2.5dB Compression

Rev. V2

Lead-Free 6 x 3 mm DFN Package Dimensions[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is NiPdAu.

GaN Transistor 50 V, 2 W DC - 2.7 GHz

MAGX-100027-002S0P

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.