

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Features

- Optimized for Cellular Base Station Applications
- Designed for Digital Predistortion Error Correction
 Systems
- Suitable for Quadrature Combined & Symmetrical Doherty Driver Amplifier Applications
- High Terminal Impedances for Broadband
 Performance
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

The MAGB-103438-020S0P is a GaN HEMT D-mode amplifier pair designed for use as a quadrature combined or symmetrical Doherty driver amplifier in base station applications in the frequency range of 3.4 - 3.8 GHz with modulated signal operation. This device supports pulsed and linear operation with peak output power levels to 25 W (44.1 dBm) in a plastic package.

Typical Quadrature Combined Performance:

 WCDMA 3GPP TM1 64 DPCH 9.9 dB PAR @ 0.01% CCDF. V_{D1,2} = 50 V, I_{DQ1,2} = 45 mA, P_{OUT} = 36 dBm

Frequency (MHz)	G _P (dB)	η _⊳ (%)	Output PAR (dB)	ACPR (dBc)	IRL (dB)
3400	17.2	29	8.0	-37	-25
3500	17.3	28	8.2	-37	-26
3600	16.9	26	8.3	-37	-29

млсом.

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function
1, 5-8, 12-21, 25-28, 32-40	N/C	No Connection
2-4	RF_{IN1} / V_{G1}	RF Input / Gate
9-11	RF_{IN2} / V_{G2}	RF Input / Gate
22-24	RF_{OUT2} / V_{D2}	RF Output / Drain
29-31	RF_{OUT1} / V_{D1}	RF Output / Drain
41	Pad ¹	Ground / Source

 The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

Ordering Information

Part Number	Package
MAGB-103438-020S0P	Bulk Quantity
MAGB-1B3438-020S0P	Dual Path Class-AB Sample Board
MAGB-103438-020STP	1000 Piece Reel

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V2

Rev. V2

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

RF Electrical Characteristics: $T_c = 25^{\circ}C$, $V_{D1,2} = 50 V$, $I_{DQ1,2} = 45 mA$ Note: Performance in MACOM Quadrature Combined Circuit, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ² , 3500 MHz	G _{SS}	-	18	-	dB
Saturated Output Power	Pulsed ² , 3500 MHz	P _{SAT}	-	44.3	-	dBm
Drain Efficiency at Saturation	Pulsed ² , 3500 MHz	η_{SAT}	-	54	-	%
AM/PM	Pulsed ² , 3500 MHz	Φ	-	-5	-	0
Modulated Peak Power	WCDMA ³ , 3500 MHz	P3dB ⁴	-	44.5	-	dBm
VBW Resonance Point	IMD 3rd Order Inflection Point	VBW_{RES}	-	200	-	MHz
Gain Flatness in 60 MHz	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	G _F	-	0.2	-	dB
Gain Variation (-25°C to +105°C)	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	ΔG	-	±0.02	-	dB/°C
Power Variation (-25°C to +105°C)	Pulsed ² , 3500 MHz	$\Delta P1dB$	-	±0.01	-	dB/°C
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR = 10:1, No Device Damage			Damage

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{D1,2} = 50 V$, $I_{DQ1,2} = 40 mA$ Note: Performance in MACOM Quadrature Combined Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	G _P	14	17.5	-	dB
Drain Efficiency	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	η	18	25	-	%
Output PAR @ 0.01% CCDF	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	PAR	6.4	8	-	dB
Adjacent Channel Power Ratio	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	ACPR	-	-35	-25	dBc
Input Return Loss	WCDMA ³ , 3500 MHz, P _{OUT} = 36 dBm	IRL	-	-16	-9	dB

2. Pulse details: 100 μs pulse width, 1 ms period, 10% Duty Cycle

3. Modulated Signal: 3.84 MHz, WCMDA 3GPP TM1 64 DPCH, 9.9dB PAR @ 0.01% CCDF.

4. $P_{-3dB} = P_{OUT} + 7 dB$ where P_{OUT} is the average output power measured using a modulated signal³ where the output PAR is compressed to 7 dB @ 0.01% probability CCDF.

DC Electrical Characteristics: $T_A = 25^{\circ}C$ (per side of symmetrical device)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	-	-	2.04	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	1.02	mA
Gate Threshold Voltage	V_{DS} = 50 V, I_{D} = 2.04 mA	VT	-2.6	-2.1	-1.6	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 40 mA	V_{GSQ}	-2.4	-1.9	-1.4	V
On Resistance	V_{DS} = 2 V, I _D = 15 mA	R _{ON}	-	2.4	-	Ω
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D,MAX}	-	1.1	-	А

²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Rev. V2

Absolute Maximum Ratings^{5,6,7,8,9} (Quadrature Combined Configuration)

Parameter	Absolute Maximum		
Drain Source Voltage, V_{DS}	130 V		
Gate Source Voltage, V_{GS}	-10 to 3 V		
Gate Current, I _G	4.04 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +120°C		
Channel Operating Temperature Range, T_{CH}	-40°C to +225°C		
Absolute Maximum Channel Temperature	+225°C		

5. Exceeding any one or combination of these limits may cause permanent damage to this device.

MACOM does not recommend sustained operation above maximum operating conditions. 6.

7. Operating at drain source voltage $V_{DS} < 55$ V will ensure MTTF > 1 x 10⁷ hours.

8

Operating at nominal conditions with $T_{CH} \le 225^{\circ}C$ will ensure MTTF > 1 x 10⁷ hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{[B + C/(T+273)]}$ where T is the channel 9 temperature in degrees Celsius., A = 3.686, B = -35.00, and C = 25,416.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 50 V, T _C = 120°C, T _{CH} = 225°C	$R_{\theta}(FEA)$	8.8	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V, T _C = 120°C, T _{CH} = 225°C	R _θ (IR)	7.4	°C/W

10. Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0B and CDM class C2A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Rev. V2

Pulsed¹¹ Load-Pull Performance - for one side only (device is symmetrical) Reference Plane at Device Leads

			Single Channel: Maximum Output Power					
			V _{D1} = 50 V, I _{DQ1} = 40 mA, T _C = 25°C, P2.5dB					
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)	
3.4	26.8 - j35.5	15.3 + j16.7	16.6	42.1	16	52	-0.2	
3.6	71.7 - j21.2	14.7 + j16.2	16.3	42.2	17	53	0.8	
3.8	48.6 + j36.5	14.4 + j16.0	15.9	42.2	17	54	0.7	

		Single Channel: Maximum Drain Efficiency						
		V _{D1} = 50 V, I _{DQ1} = 40 mA, T _C = 25°C, P2.5dB						
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹³ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	AM/PM (°)	
3.4	33.3 - j45.2	8.9 + j20.6	18.4	41.1	13	60	-5	
3.6	94.3 - j0.3	7.2 + j21.3	18.3	40.2	10	62	-4	
3.8	34.8 + j42.1	8.9 + j19.9	17.4	41.4	14	63	-3	

Impedance Reference

Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

- 11. Pulse details: 100 μs pulse width, 1 ms period, 10% Duty Cycle.
- 12. Load Impedance for optimum output power.
- 13. Load Impedance for optimum efficiency.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Pulsed¹¹ Load-Pull Performance - for one side only (device is symmetrical) 3.6 GHz

P2.5dB Loadpull Output Power Contours (dBm)

P2.5dB Loadpull Gain Contours (dB)

Gain vs. Output Power

P2.5dB Loadpull Drain Efficiency Contours (%)

P2.5dB Loadpull AM/PM Contours (°)

Drain Efficiency vs. Output Power

5

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V2

Rev. V2

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Evaluation Board and Recommended Tuning Solution 3.4 - 3.6 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{G1} and V_{G2} to the pinch-off Voltage (V_P), typically -3 V.
- 2. Turn on V_{D1} and V_{D2} to nominal Voltage (50 V).
- 3. Increase V_{G1} until I_{D1} current is reached.
- 4. Increase V_{G2} until I_{D2} current is reached.
- 5. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease both V_{G1} and V_{G2} down to $V_{P.}$
- 3. Decrease V_{D1} and V_{D2} down to 0 V.
- 4. Turn off V_{G1} and V_{G2} .

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V2

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Evaluation Board and Recommended Tuning Solution 3.4 - 3.6 GHz

Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1, C8, C11, C12, C21, C22	10 µF	+/- 10%	Murata	GRM21BZ71C106KE15L	
C2, C7, C13, C20	0.1 µF	+/- 10%	DigiKey	C1206C104K1RACTU	
C3, C6, C14, C19	1000 pF	+/- 10%	DigiKey	C0805C102K2RACTU	
C4, C5, C15, C18	100 pF	+/- 5%	Murata	GQM2195C2E101JB12D	
C9, C10, C16, C17, C25, C26	3.9 pF	+/- 0.1 pF	Murata	GQM2195C2E3R9BB12D	
C23, C24	0.3 pF	+/- 0.1 pF	Murata	GQM2195C2ER30BB12D	
R1, R2	20 Ω	+/- 1%	DigiKey	RT0805DRE0720RL	
R3, R4	50 Ω	+/- 1%	RN2 Technologies	S1206N	
X1, X2	3dB Coupler Anaren X3C35F			X3C35F1-03S	
PCB	RO4350, 20 mil, 1 oz. Cu, Au Finish				

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V2

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Typical Performance as Measured in the 3.4 - 3.6 GHz Evaluation Board: WCMDA 3GPP TM1 64 DPCH 9.9 dB PAR @ 0.01% CCDF $V_{D1,2}$ = 50 V, $I_{DQ1,2}$ = 45 mA, T_c = 25°C

Gain vs. Frequency at POUT = 36 dBm

ACPR (Max ±5 MHz) vs. Frequency at POUT = 36 dBm

Efficiency vs. Frequency at POUT = 36 dBm

PAR (CCDF @ 0.01%) vs. Frequency at Pout = 36 dBm

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

Rev. V2

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Typical Performance as Measured in the 3.4 - 3.6 GHz Evaluation Board: WCMDA 3GPP TM1 64 DPCH 9.9 dB PAR @ 0.01% CCDF $V_{D1,2}$ = 50 V, $I_{DQ1,2}$ = 45 mA, T_c = 25°C

Gain vs. Output Power

Efficiency vs. Output Power

PAR (CCDF @ 0.01%) vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V2

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Typical Performance as Measured in the 3.4 - 3.6 GHz Applications Circuit: 2-Tone Video Bandwidth Performance $V_{D1.2} = 50 \text{ V}, I_{DQ1.2} = 45 \text{ mA}, P_{OUT} = 36 \text{ dBm Avg}.$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN Amplifier 50 V, 4 W AVG 3.4 - 3.8 GHz

Rev. V2

5 x 7 mm QFN Plastic Package[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V2

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.