

MAGB-101836-025B0P

Rev. V2

Features

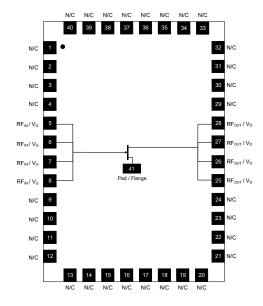
- Optimized for Cellular Base Station Applications
- High Terminal Impedances for Broadband Performance
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

The MAGB-101836-025B0P GaN HEMT is a D-mode amplifier designed for base station applications and optimized for modulated signal operation in the 1.8 - 3.6 GHz frequency bands. This device supports pulsed and linear operation with peak output power levels to 25 W (44 dBm) in a 5 x 7 mm QFN package.

Typical Performance:

• WCDMA 3GPP TM1 64 DPCH 9.9 dB PAR @ 0.01% CCDF. V_{DS} = 50 V, I_{DQ} = 75 mA , P_{OUT} = 36 dBm


Frequency (MHz)	GP (dB)	η _⊳ (%)		
3400	16.2	29	8.2	-36.0
3500	16.9	29	8.2	-37.0
3600	16.6	29	8.0	-37.5

Ordering Information^{1,2}

Part Number	Package
MAGB-101836-025B0P	Bulk Quantity
MAGB-1B1836-025B0P	3.6 GHz Class-AB Sample Board
MAGB-101836-025BTP	1000 Piece Reel

- 1. Sample Board includes two loose parts.
- 2. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1 - 4, 9 - 24, 29 - 40	N/C	No Connection
5 - 8	RF _{IN} / V _G	RF Input / Gate
25 - 28	RF _{OUT} / V _D	RF Output / Drain
41	Pad ³	Ground / Source

The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAGB-101836-025B0P

Rev. V2

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 75 \text{ mA}$ Note: Performance in MACOM Evaluation Test Board, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁴ , 3500 MHz	Gss	-	18	-	dB
Saturated Output Power	Pulsed ⁴ , 3500 MHz	P _{SAT}	-	43.5	-	dBm
Drain Efficiency at Saturation	Pulsed ⁴ , 3500 MHz	η _{SAT}	-	55	-	%
AM/PM	Pulsed ⁴ , 3500 MHz	Φ	-	-10	-	0
Modulated Peak Power	WCDMA ⁵ , 3500 MHz	P3dB ⁶	-	43.5	-	dBm
VBW Resonance Point	IMD 3rd Order Inflection Point	VBW _{RES}	-	300	-	MHz
Gain Flatness in 60 MHz	WCDMA ⁵ , P _{OUT} = 36 dBm	G _F	-	0.4	-	dB
Gain Variation (-25°C to +105°C)	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	ΔG	-	0.02	-	dB/°C
Power Variation (-25°C to +105°C)	Pulsed ⁴ , 3500 MHz	ΔP1dB	-	0.02	-	dB/°C
Power Gain	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	G _P	-	16.9	-	dB
Drain Efficiency	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	η	-	29	-	%
Output PAR @ 0.01% CCDF	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	PAR	-	8.2	-	dB
Adjacent Channel Power Ratio	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	ACPR	-	-37	-	dBc
Input Return Loss	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm		-12	-	dB	
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR	= 10:1, No	Device	Damage

RF Electrical Specifications: T_A = 25°C, V_{DS} = 50 V, I_{DQ} = 75 mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	G_P	13.5	15.2	ı	dB
Drain Efficiency	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	η	24.5	28	-	%
Output PAR @ 0.01% CCDF	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	PAR	6.7	7.3	-	dB
Adjacent Channel Power Ratio	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	ACPR	_	-35.2	-33	dBc
Input Return Loss	WCDMA ⁵ , 3500 MHz, P _{OUT} = 36 dBm	IRL	-	-6.5	-4	dB

^{4.} Pulse details:100 µs pulse width, 1 ms period, 10% Duty Cycle

5. Modulated Signal: 3.84 MHz, WCDMA 3 GPP TM1 64 DPCH, 9.9 dB PAR @ 0.01% CCDF

P3dB = P_{OUT} 7 dB where P_{OUT} is the average output power measured using a modulated signal³ where the output PAR is compressed to 7 dB @ 0.01% probability CCDF.

MAGB-101836-025B0P

Rev. V2

DC Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 130 V	I _{DLK}	-	1	3.3	mA
Gate-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$	I_{GLK}	-	-	1.65	mA
Gate Threshold Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 3.3 \text{ mA}$	V _T	-2.6	-2.0	-1.6	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 75 \text{ mA}$	V_{GSQ}	-2.4	-1.7	-1.4	V
On Resistance	$V_{DS} = 2 \text{ V}, I_{D} = 25 \text{ mA}$	R _{on}	-	1.45	-	W
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D,MAX}	-	1.9	ı	Α

Rev. V2

Absolute Maximum Ratings^{7,8,9,10,11}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	130 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	4 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +120°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+250°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 1 x 10⁷ hours.
 Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 1 x 10⁷ hours.
 MTTF may be estimated by the expression MTTF (hours) = A e ^[B+C/(T+273)] where *T* is the channel temperature in degrees Celsius., A = 3.686, B = -35.00, and C = 25,416.

Thermal Characteristics¹²

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V}, P_{D} = 13 \text{ W},$ $T_{C} = 120^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	R _θ (FEA)	8.9	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V, P _D = 13 W, T _C = 135°C,T _{CH} = 225°C	$R_{\theta}(IR)$	7.7	°C/W

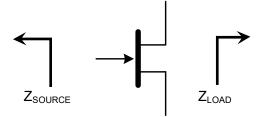
^{12.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1A and CDM class C1 devices.


Rev. V2

Pulsed¹³ Load-Pull Performance: Reference Plane at Device Leads

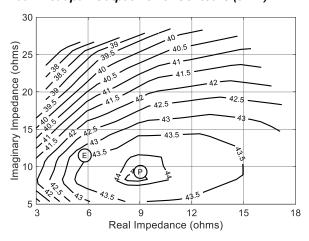
		Maximum Output Power					
Frequency	Z _{SOURCE}		$V_{DS} = 50 \text{ V}, I_{DQ} = 75 \text{ mA}, T_C = 25^{\circ}\text{C}, P2.5 \text{dB}$				
(MHz)	(Ω)	Z _{LOAD} ¹⁴ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η _D (%)	AM/PM (°)
2300	2.8 - j6.1	2.6 + j0.8	17.5	44.2	26.3	59	1
2400	2.9 - j5.4	2.5 + j1.1	17.8	44.3	28.8	61	1
2500	3.0 - j7.7	2.6 + j1.3	16.5	44.3	26.9	60	1
3400	8.0 - j18.5	9.5 + j9.9	15.5	44.0	25.1	48.7	2.3
3500	6.1 - j19.6	9.0 + j9.4	15.2	44.1	25.7	49.9	1.9
3600	7.8 - j21.6	8.9 + j8.8	15.0	44.1	25.7	49.7	2.9

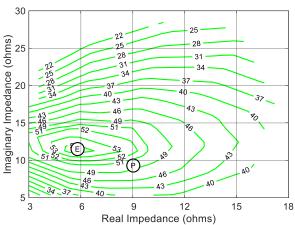
		Maximum Drain Efficiency					
Frequency	Z _{SOURCE}		V _{DS} = 50 V, I _{DQ} = 75 mA, T _C = 25°C, P2.5dB				
(MHz)	(Ω)	Z _{LOAD} ¹⁵ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η _D (%)	AM/PM (°)
2300	2.8 - j6.1	2.0 + j0.3	19.5	42.7	18.6	67.5	5
2400	2.9 - j5.4	1.8 + j0.2	18.7	42.7	18.6	69	5
2500	3.0 - j7.7	1.7 + j0.1	18.0	42.7	18.6	65	5
3400	7.9 - j20.0	5.5 + j11.6	16.7	43.3	21.4	53.1	-0.5
3500	6.4 - j21.5	5.8 + j11.5	16.3	43.4	21.9	54.4	0.0
3600	8.1 - j23.7	5.7 + j11.3	15.9	43.3	21.4	55.4	1.8

Impedance Reference

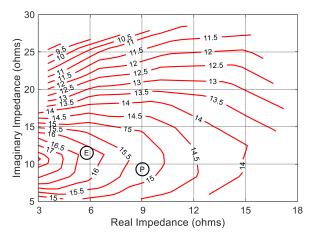
Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

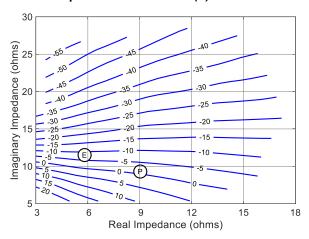
 Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

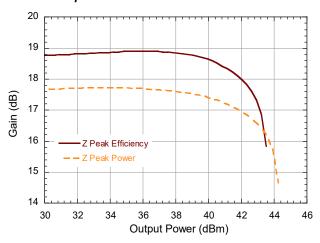

- 13. Pulse details: 100 μ s pulse width, 1 ms period, 10% duty cycle.
- 14. Load Impedance for optimum output power.
- 15. Load Impedance for optimum efficiency.


Rev. V2

Pulsed¹³ Load-Pull Performance: 3500 MHz


P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Drain Efficiency Contours (%)

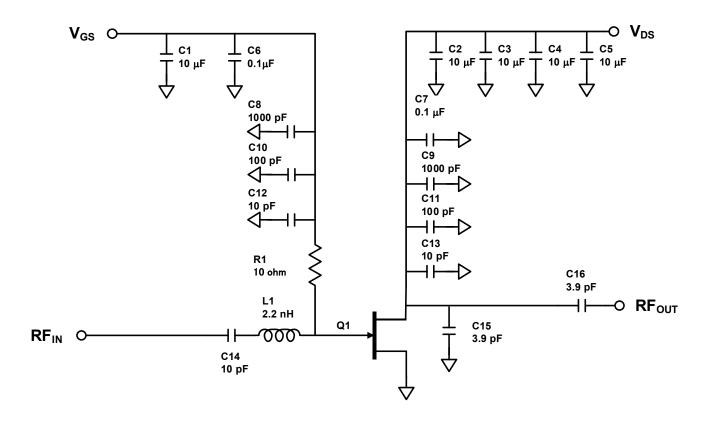

P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

Gain vs. Output Power

Drain Efficiency vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.

6

Rev. V2

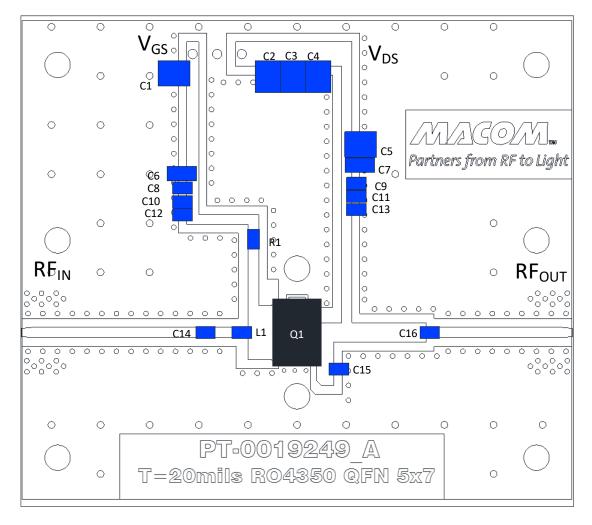
Evaluation Test Board and Recommended Tuning Solution 3.4 - 3.6 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution, component placement, transmission lines, and details are shown on the next page.

Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

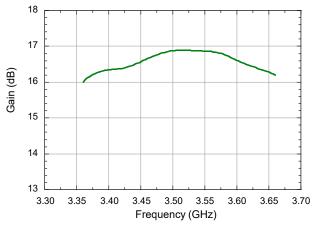

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to V_{P}
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

Rev. V2

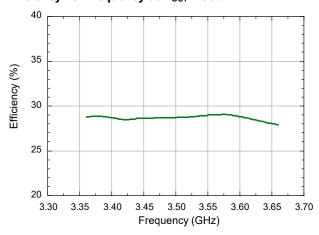
Evaluation Test Board and Recommended Tuning Solution 3.4 - 3.6 GHz

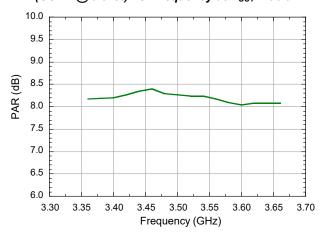
Parts List


Reference Designator	Value	Tolerance	Manufacturer	Part Number		
C1,C2,C3,C4,C5	10 μF	10%	Murata	GRM32EC72A106KE05L		
C6,C7	0.1 μF	10%	Kemet	C1206C104K1RACTU		
C8,C9	1000 pF	10%	Kemet	C0805C102K2RACTU		
C10,C11	100 pF	5%	Murata	GQM2195C2E101JB12		
C12,C13,C14	10 pF	±0.1 pF	Murata	GQM2195C2E100FB12		
C15,C16	3.9 pF	±0.1 pF	Murata	GQM2195C2E3R9BB12		
L1	2.2 nH	±0.2 nH	AVX	L08052R2CES		
R1	10 Ω	1%	Panasonic	ERJ-6ENF10R0V		
PCB	Rogers RO4350, e _r =3.66, 20 mil					

Rev. V2

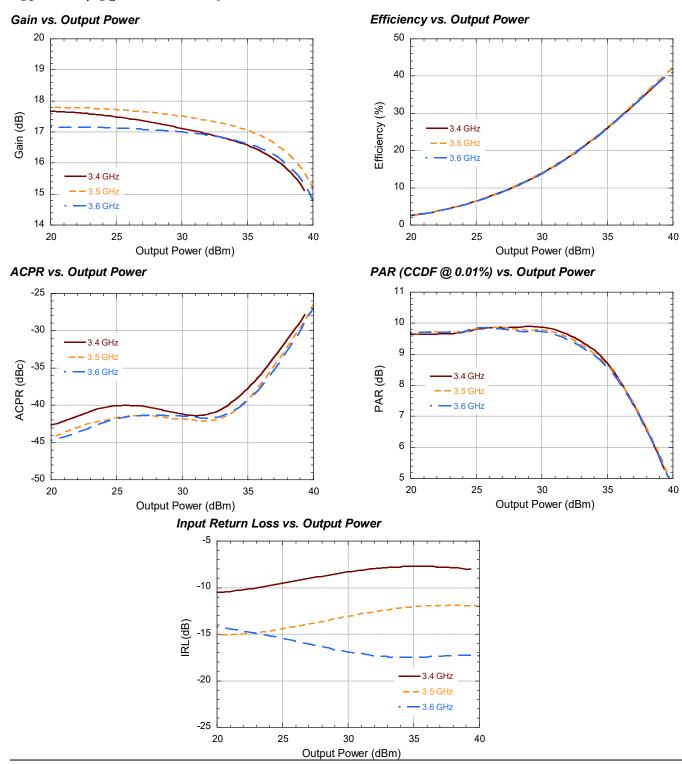
Typical Performance as Measured in the 3.4 - 3.6 GHz Evaluation Test Board: WCDMA 3GPP TM1 64 DPCH, 9.9 dB PAR @ 0.01% CCDF Performance V_{DS} = 50 V, I_{DO} = 75 mA at T_{C} = 25°C


Gain vs. Frequency at P_{OUT} = 36 dBm


ACPR vs. Frequency at $P_{OUT} = 36 \text{ dBm}$

Efficiency vs. Frequency at Pout = 36 dBm

PAR (CCDF @ 0.01%) vs. Frequency at P_{OUT} = 36 dBm

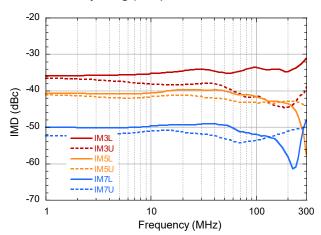

Input Return Loss vs. Frequency at Pout = 36 dBm

Rev. V2

Typical Performance as Measured in the 3.4 - 3.6 GHz Evaluation Test Board: WCDMA 3GPP TM1 64 DPCH, 9.9 dB PAR @ 0.01% CCDF Performance V_{DS} = 50 V, I_{DQ} = 75 mA at T_{C} = 25°C

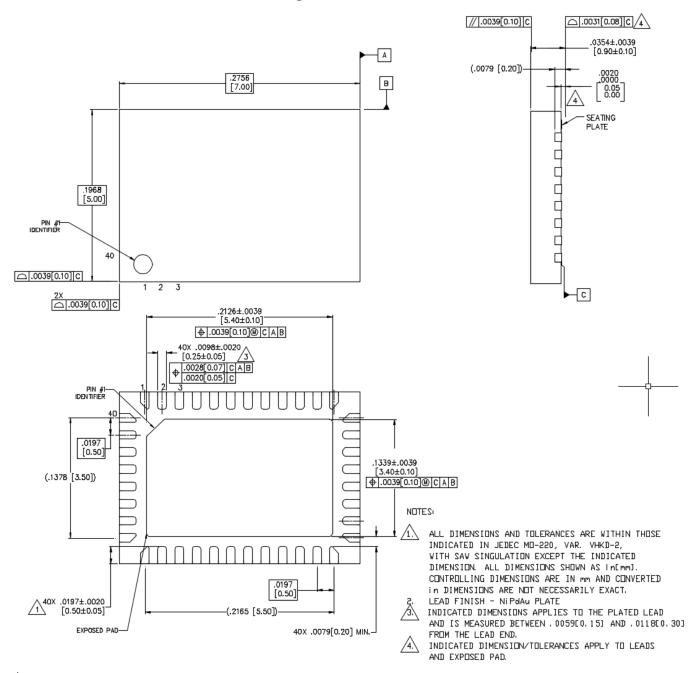
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.


10

Rev. V2

Typical Performance as Measured in the 3.4 - 3.6 GHz Evaluation Test Board: 2-Tone Video Bandwidth Performance V_{DS} = 50 V, I_{DQ} = 75 mA at T_{C} = 25°C


IMD vs. Tone Spacing (MHz) at 3.5 GHz

Rev. V2

Outline: 5 x 7 mm QFN Plastic Package[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements.

MAGB-101836-025B0P

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.