

Rev. V3

Features

- 40-bit Serial-to-Parallel Converter
- 20-bit Multiplexer
- Serial Out Port for Diagnostics and Daisy Chaining
- Compatible with 5.0 V and 3.3 V CMOS Logic
- Built-in Active Pull-down for Logic Inputs
- Fast Switching
- Low Current consumption
- Lead-Free 6 mm 48-lead PQFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Applications

• Aerospace & Defense

Description

The MADR-011007 is a 40-bit serial-to-parallel driver in a low cost 6 mm 48-lead PQFN plastic package. It is designed as a serial control interface. A 20-bit multiplexer is designed on-chip to provide bit destination control capability for bit numbers 21 through 40. High speed digital CMOS technology is utilized to achieve low power dissipation.

The MADR-011007 can be used to drive depletion mode FETs using a -5 V power supply. It can also be used as a general serial-to-parallel converter using a +5 V power supply.

Ordering Information¹

Part Number	Package
MADR-011007-TR0500	500 piece reel

^{1.} Reference Application Note M513 for reel size information.

Pin Out

Pin#	I/O	Function	Pin #	1/0	Function
1	0	C1 or B1	25	0	A10
2	0	B1 or C1	26	0	A20
3	0	B2 or C2	27	0	A19
4	0	B3 or C3	28	0	A18
5	0	B4 or C4	29	0	A17
6	0	B5 or C5	30	0	A16
7	0	B6 or C6	31	0	A15
8	0	B7 or C7	32	0	A14
9	0	B8 or C8	33	0	A13
10	0	B9 or C9	34	0	A12
11	0	B10 or C10	35	0	A11
12	0	C10 or B10	36	0	A1
13	0	C9 or B9	37	0	A2
14	0	C8 or B8	38	0	A3
15	0	C7 or b7	39	0	A4
16	0	C6 or b6	40	0	A5
17 ³		GND or VCC	41	I	LOAD
18 ³		VEE or GND	42	I	CLK
19	I	CTRL₁	43	I	SER_IN
20	I	CTRL ₀	44	0	SER_OUT
21	0	A6	45	0	C5 or B5
22	0	A7	46	0	C4 or B4
23	0	A8	47	0	C3 or B3
24	0	A9	48	0	C2 or B2
			49		Paddle ²

2. The exposed paddle centered on the package bottom must

be either left "open" (no connection) or connected to V_{EE} . 3. When using 0 V/+5 V logic, pin 17 should be connected to positive power supply +5 V (VCC) and pin 18 should be connected to ground. When using -5 V/0 V logic, pin 17 should be connected to ground and pin 18 should be connected to – 5 V (VEE).

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V3

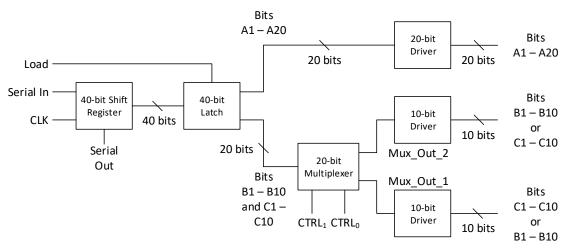
Guaranteed Operating Ranges^{4,5,6}

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{EE} ⁶	Negative DC Supply Voltage	-5.5	-5.0	-4.5	V
T _{OPER}	Operating Temperature	-40	25	85	°C
Іон	DC Output Current - High	-1	_	_	mA
I _{OL}	DC Output Current - Low	_	_	1	mA

- 4. Unused logic inputs must be tied to either GND or V_{EE} . 5. 0.01 μF decoupling capacitors are required on the power supply line.
- 6. This driver can also operate at -3.3 V V_{EE}, but at slower speed.

Performance over Guaranteed Operating Range

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IH}	Input High Voltage	Guaranteed High Input Voltage	-1.5	0.0	0.0	V
V _{IL}	Input Low Voltage	Guaranteed Low Input Voltage	-5.5	-5.0	-3.5	V
V _{OH}	Output High Voltage	I _{OH} = -250 μA	_	-0.1	_	V
V _{OL}	Output Low Voltage	I _{OL} = 250 μA	_	V _{EE} + 0.1	_	V
I _{IN}	Input Leakage Current (per Input)	V_{IN} = GND or V_{EE}	_	80	_	μΑ
I _{OH}	DC Output Current-High (per Output)	V _{EE} = -5.0 V	-1			mA
I _{OL}	DC Output Current-Low (per Output)	V _{EE} = -5.0 V	_	_	1	mA
I _{EE}	Quiescent Supply Current	V _{IN} = GND or V _{EE} , No Output Load	_	_	400	μΑ
T _D	Propagation Delay	50% LOAD signal to 90% $V_{\rm O}$	_	12	_	ns
C _{IN}	Input Capacitance	_	_	6	_	pF


Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Unit
V _{EE}	Negative DC Supply Voltage	-7.0	0.3	V
V _{IN}	DC Input Voltage	V _{EE} - 0.3	0.3	V
Vo	DC Output Voltage	V _{EE} - 0.3	0.3	V
T _{OPER}	Operating Temperature	-55	125	°C
T _{STG}	Storage Temperature	-65	150	°C
ESD	ESD Sensitivity (HBM)	2.0	_	kV

Rev. V3

Function Diagram

Serial Bit Stream Definition⁷

Bit#	Bit Name	Bit#	Bit Name
1	A1	21	B1
2	A2	22	C1
3	A3	23	B2
4	A4	24	C2
5	A5	25	В3
6	A6	26	C3
7	A7	27	B4
8	A8	28	C4
9	A9	29	B5
10	A10	30	C5
11	A11	31	B6
12	A12	32	C6
13	A13	33	B7
14	A14	34	C7
15	A15	35	B8
16	A16	36	C8
17	A17	37	В9
18	A18	38	C9
19	A19	39	B10
20	A20	40	C10

^{7.} Bit number 1 is the first bit going into the serial interface.

Multiplexer Truth Table^{8, 9}

CTRL ₁	CTRL₀	Mux_Out_1	Mux_Out_2
L	L	С	В
L	Н	В	С
Н	Х	С	В

^{8.} For V_{EE} = -5 V, logic "L" = -5 V, and logic "H" = 0 V. For VCC = 5 V, logic "L" = 0 V, and logic "H" = 5 V.

Handling Procedures

Please observe the following precautions to avoid damage:

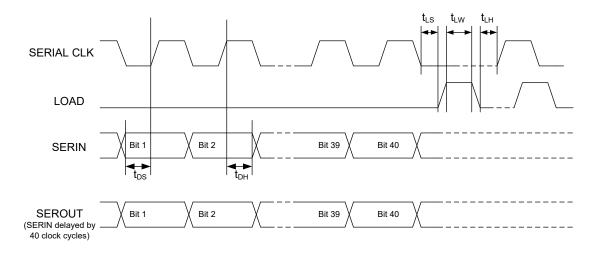
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

^{9. &}quot;B" represents odd bits of the uppermost 20-bit stream, and "C" represents even bits of the uppermost 20-bit stream.

Rev. V3

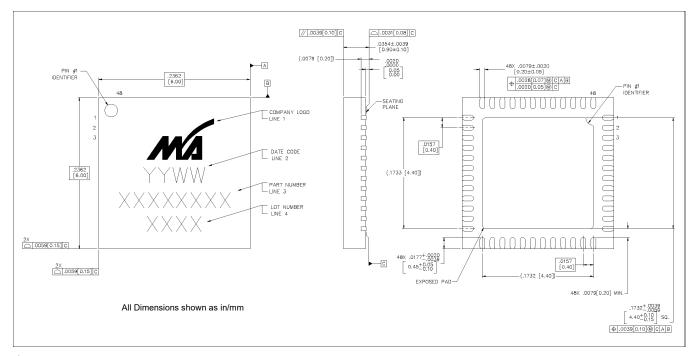
Bit Stream Destinations


Multiplexer		Bit # at Output			
Output	Pin#	CTRL ₁ = L CTRL ₀ = H	Otherwise		
	2	21	22		
	3	23	24		
	4	25	26		
	5	27	28		
Musy Out 1	6	29	30		
Mux_Out_1	7	31	32		
	8	33	34		
	9	35	36		
	10	37	38		
	11	39	40		
	1	22	21		
	48	24	23		
	47	26	25		
	46	28	27		
Musy Out 2	45	30	29		
Mux_Out_2	16	32	31		
	15	34	33		
	14	36	35		
	13	38	37		
	12	40	39		

Pin#	Bit # at Output (all states)
36	1
37	2
38	3
39	4
40	5
21	6
22	7
23	8
24	9
25	10
35	11
34	12
33	13
32	14
31	15
30	16
29	17
28	18
27	19
26	20

Rev. V3

Serial Interface Timing Diagram


Serial Interface Timing Characteristics

		Тур	oical performa	nce	
Symbol	Parameter	-40°C	+25°C	+85°C	Unit
t _{SCK}	Min. Serial Clock Period	100	100	100	ns
t _{DS}	Min. DATA Set-up Time	20	20	20	ns
t _{DH}	Min. DATA Hold Time	20	20	20	ns
t _{LS}	Min. LOAD Set-up Time	20	20	20	ns
t _{LW}	Min. LOAD Pulse Width	20	20	20	ns
t _{LH}	Min. Serial CLK Hold Time from LOAD	20	20	20	ns

Rev. V3

Lead-Free 6 mm 48-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg.

Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.