10 W GaN Power Amplifier 6 - 18 GHz

MAAP-011422-DIE

Rev. V2

Features

Gain: 20 dB

Output Power: 41.5 dBm @ 12 GHz

PAE: 33%

Power Supply: 12 V, 3.5 A @ 12 GHz

Input & Output Matched: 50 Ω
Die Size: 4160 x 3100 x 100 μm

RoHS* Compliant

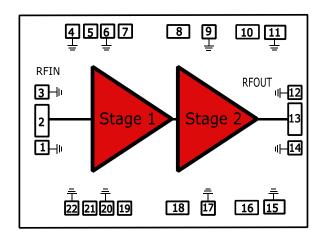
Applications

Radar

SATCOM

Description

MAAP-011422-DIE is a 10 W high-performance GaN Power Amplifier MMIC designed to operate from 6 to 18 GHz and is offered in bare die form. It is fully matched across the frequency band.


The MAAP-011422-DIE has 41 dBm of output power and 33% PAE and can be used an a power amplifier stage. This device is ideally suited to satellite communication and radar applications.

The MAAL-011422-DIE is manufactured using a high performance 100 nm gate length GaN on Si HEMT power technology (D01GH). The MMIC uses gold bonding pads and backside metallization and is fully protected with silicon nitride passivation to obtain the highest level of reliability.

Ordering Information

Part Number	Package
MAAP-011422-DIE	Bare die
MAAP-011422-SB2	Evaluation Board

Block Diagram

Pad Configuration

Pad #	Function
1,3,4,6,9,11,12,14,15,17, 20,22	Ground
2	Input RF
5	Gate Voltage Stage 1 North
7	Gate Voltage Stage 2 North
8	Drain Voltage Stage 1 North
10	Drain Voltage Stage 2 North
13	Output RF
16	Drain Voltage Stage 2 South
18	Drain Voltage Stage 1 South
19	Gate Voltage Stage 2 South
21	Gate Voltage Stage 1 South

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

Electrical Specifications:

Freq. = 6 - 18 GHz, $VD_{1,2}$ = 12 V, Quiscent Bias Currents (ID_1 = 350 mA, ID_2 = 640 mA), T_A = + 25°C with a duty cycle of 1% (pulse mode)

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Voltage V _{D1A,D2A} and V _{D1B,2B}	_	V	_	12	
Drain Current I _{D1,D2}	At Saturated Power @ 12 GHz	Α		3	_
Small Signal Gain	8 - 16 GHz	dB	17	20	_
Small Signal Gain	6 - 8 GHz and 16 - 18 GHz	dB	15	18	_
Saturated Power	8 - 16 GHz	dBm	39	40.5	_
Saturated Power	6 - 8 GHz and 16 - 18 GHz	dBm	38	39.5	_
Power Added Efficiency	_	%	_	33	_
Input Reflection Coefficient	_	dB	_	-10	_
Output Reflection Coefficient	_	dB	_	-13	_

Recommended Operating Conditions

Parameter	Unit
Voltage Bias	12 V
Quiescent Current	1 A
Junction Temperature	+200°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-40°C to +150°C

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

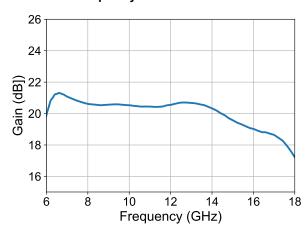
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Absolute Maximum Ratings^{1,2,3,4}

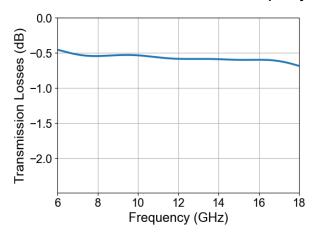
Parameter	Absolute Maximum
Drain Voltage	+20 V
Gate Voltage	-3 V to 0 V
Breakdown Voltage	+50 V
Input Power	30 dBm
Junction Temperature	200°C
Storage Temperature	-40°C to 150°C
Assembly Temperature	300°C per 60 seconds

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 3. Operating at nominal conditions with $T_J \le +200^{\circ}C$ will ensure MTTF > 1 x 10^7 hours.
- 4. Junction Temperature (T_J) = T_C + Θ jc * (V * I) a) For T_C = +20°C,

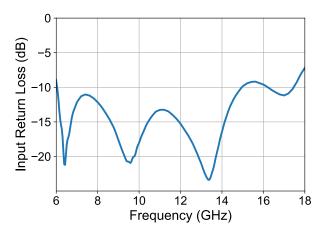
R_{TH} = 6 °C /W @ Saturated Power

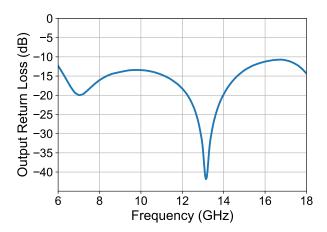


Rev. V2


Typical Performance Curves probed measured on wafer

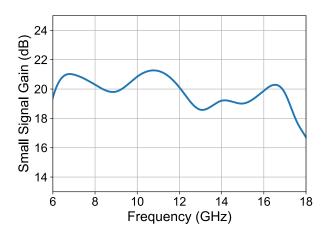
S-parameters with 0.1nH assumed Wirebond

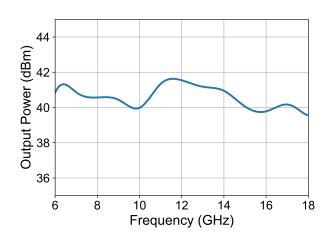

Gain over Frequency


RF access line & connector Losses over Frequency

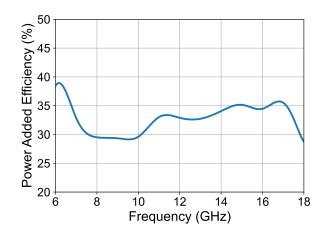
Input Return Loss over Frequency

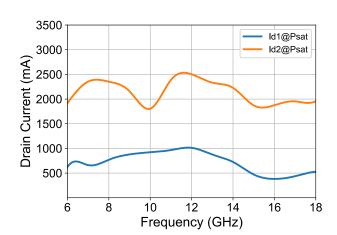
Output Return Loss over Frequency




MAAP-011422-DIE Rev. V2

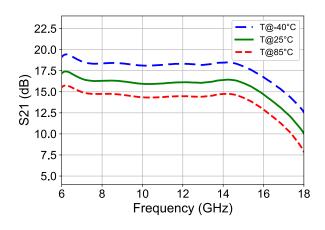
Typical Performance Curves probed measured on-wafer


Small Signal Gain over Frequency

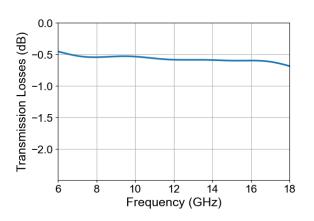

Saturated Power over Frequency

Power Added Efficiency over Frequency

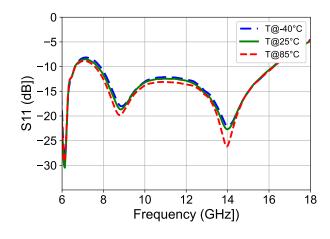
DC Current at Saturated Power over Frequency

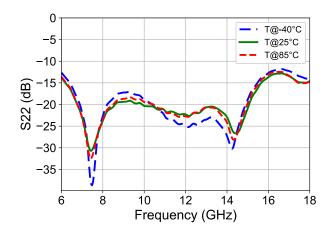


MAAP-011422-DIE Rev. V2

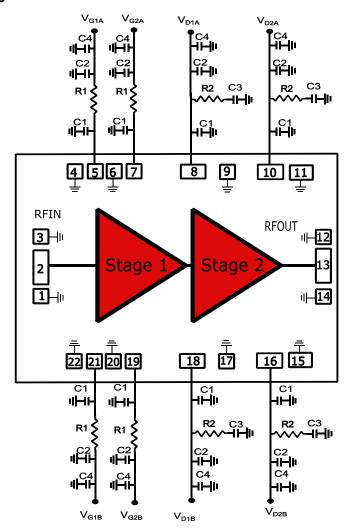

Typical performance

S-parameters in CW at PCB level with De-Embedding at different temperature


Gain over Frequency

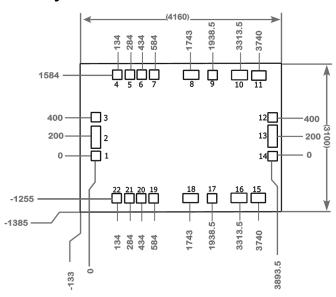

RF access line & connector Losses over Frequency

Input Return Loss over Frequency

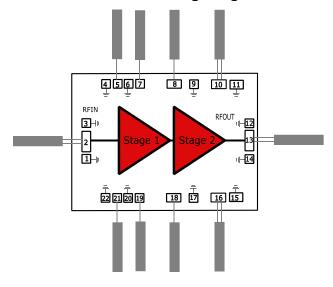

Output Return Loss over Frequency

Rev. V2

Functional Schematic


Parts List

Part	Value	Case Style	Manufacturer	Туре	Manufacturer's Part #
C1	47 pF	0.381 mm	KYOCERA AVX	single layer capacitor	116RG470M100TT
C2	10 nF	1005 mm	KYOCERA AVX	SMD multi layer capacitor	0402YC103KAT2A
С3	100 nF	1005 mm	Murata	SMD multi layer capacitor	GRM155R70J104KA0 1D
C4	1 µF	1005 mm	Murata	SMD multi layer capacitor	GRM155R70G105KA12D
R1	68 Ω	1005 mm	PANASONIC	SMD resistor	ERA2VEB68R0X
R2	10 Ω	1005 mm	YAGEO	SMD resistor	RC0402JR-0710RL



Rev. V2

Die Layout

Recommended Bonding Diagram

Pad Dimensions (µm)

Pad #	×	Y
1,3,12,14	102	97
2,13	102	147
4,5,6,7,9,17,19,20,21,22	97	97
8,18	167	97
10,16	397	137
11,15	350	137

Revision History

Rev	Date	Change description
V1	12/29/23	PTRR
V2	12/03/24	Production Release

10 W GaN Power Amplifier 6 - 18 GHz

MAAP-011422-DIE

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.