

MAAP-011358-DIE

Rev. V1

Features

High Gain: 24 dB
P1dB: 37.5 dBm
P_{SAT}: 38.5 dBm

IM3 Level: -24 dBc @ P_{OUT} = 30 dBm/tone
 Power Added Efficiency: 23% @ P_{SAT}

Return Loss: 12 dB

• Bare Die Dimensions: 3.6 x 3.8 x 0.05 mm

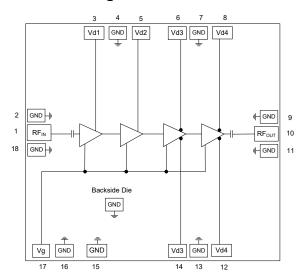
RoHS* Compliant

Applications

• VSAT Communications

Description

The MAAP-011358-DIE is a 4-stage, 6 W power amplifier in bare die form. This power amplifier operates from 27.5 to 30.0 GHz and provides 24 dB of linear gain, 6 W saturated output power, and 23% efficiency while biased at 6 V.


This product is fabricated using a GaAs pHEMT device process which features full passivation for enhanced reliability.

Ordering Information

Part Number	Package
MAAP-011358-DIE	Die in Gel Pack ¹

^{1.} Die quantity varies

Functional Diagram

Pin Configuration²

Pad	Function	Description
1	RF _{IN}	RF Input
2, 4, 7, 9, 11, 13, 15, 16, 18 & backside	GND	Ground
3	V_D1	Drain Voltage Stage 1
5	V _D 2	Drain Voltage Stage 2
6, 14	V _D 3	Drain Voltage Stage 3
8, 12	V _D 4	Drain Voltage Stage 4
10	RF _{OUT}	RF Output
17	V_{G}	Gate Voltage

^{2.} Backside metal is RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Electrical Specifications³: Freq. = 27.5 - 30.0 GHz, T_C = +25°C, V_D = +6 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	$P_{IN} = 0 \text{ dBm}, 27.5 \text{ GHz}$ $P_{IN} = 0 \text{ dBm}, 30.0 \text{ GHz}$	dB	22	24	_
P _{OUT}	P _{IN} = 17 dBm, 27.5 GHz P _{IN} = 17 dBm, 30.0 GHz	dBm	36.0	37.5	_
IM3 Level	P _{OUT} = 30 dBm / tone	dBc	_	-24	_
Power Added Efficiency	$P_{SAT}(P_{IN} = 17 \text{ dBm})$	%	_	20.5	_
Input Return Loss	P _{IN} = -20 dBm	dB	_	12	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	12	_
Quiescent Current	I _{DQ} (see bias conditions, page 5)	mA	_	3000	_
Current	P _{SAT} (P _{IN} = 17 dBm)	mA	_	4830	_

^{3.} Specifications apply to MMIC die with two RF input and two RF output bond wires, and tested with 50 Ω GSG probes. Further performance tuning to optimize the RF input and RF output impedance matching is shown on Recommended Bonding Diagram and PCB Layout Detail (pg. 4). Typical performance curves are achieved by using the recommended bonding diagram and PCB layout detail.

Maximum Operating Ratings

Parameter	Rating
Input Power	+19 dBm
Junction Temperature ^{4,5}	+160°C
Operating Temperature	-40°C to +85°C

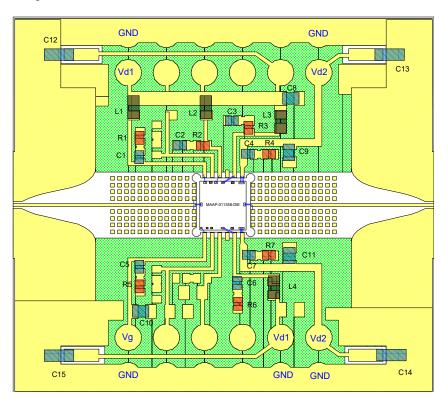
- Operating at nominal conditions with T_C ≤ +160°C will ensure MTTF > 1 x 10⁶ hours.
- 5. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) (P_{out} P_{IN}))$ Typical thermal resistance $(\Theta_{JC}) = 3.4$ °C/W. a) For $T_C = +25$ °C and 28 GHz, $T_J = 102$ °C @ 6 V, 4.83 A, $P_{OUT} = 38.0$, $P_{IN} = 17$ dBm

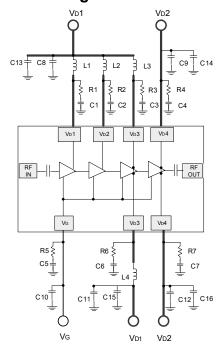
b) For $T_c = +80^{\circ}C$,

 $T_J = 161$ °C @ 6 V, 4.83 A, $P_{OUT} = 37.2$, $P_{IN} = 17$ dBm

Absolute Maximum Ratings^{6,7}

Parameter	Absolute Maximum
Input Power	+24 dBm
Drain Voltage	+6.5 V
Gate Voltage	-3 to 0 V
Junction Temperature ⁸	+175°C
Storage Temperature	-65°C to +150°C


- 6. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction Temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.


MAAP-011358-DIE

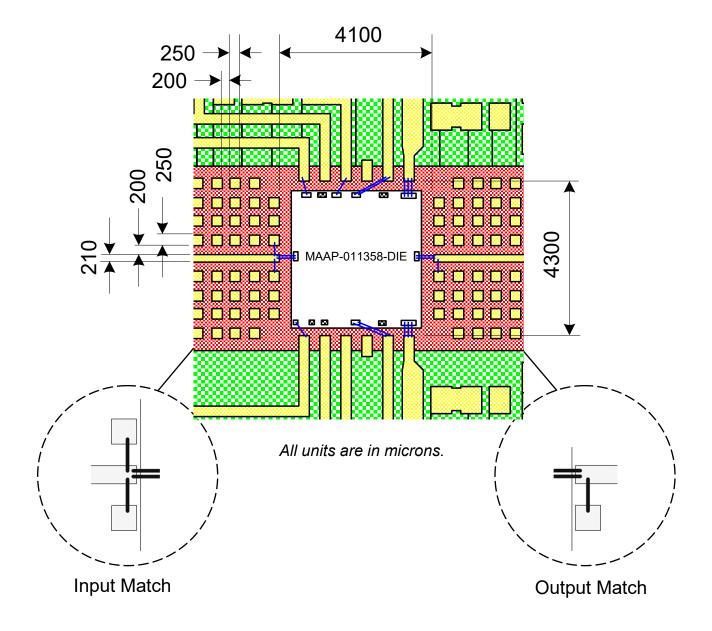
Rev. V1

Application PCB Layout

Application Diagram

Application Parts List

Part	Value	Case Style
C1 - C7	0.01 μF	0402
C8 - C12	1 µF	0603
C13 - C16	10 μF	0805
R1 - R7	10 Ω	0402
L1 - L4 (Chip Ferrite Bead)	BLM18HE601SN1D	0603


PCB Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Dielectric Layer: Rogers RO4350B, 0.101 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Finished overall thickness: 0.135 mm

Recommended Bonding Diagram and PCB Layout Detail:

For optimum power match, RF input and output microstrip lines require open stubs on the application board for bonding wire inductance compensation. Optimum bonding wire inductance for the RF I/O connection is 0.2 nH, and physical length for the gold bond wire (.001" dia.) is approximately 350 µm each for the two wire connection.

Power Amplifier, 6 W 27.5 - 30.0 GHz

MAAP-011358-DIE

Rev. V1

Application Information

The MAAP-011358-DIE is designed to be easy to use yet high performance. The ultra small size and simple bias allows easy placement on system board. RF input and output ports are DC de-coupled internally.

Biasing conditions

Recommended biasing conditions are V_D = 6 V, I_{DQ} = 3000 mA (controlled with V_G). The drain bias voltage range, V_D , is 3 to 6.5 V, and the quiescent drain current biasing range, I_{DQ} , is 2000 to 4000 mA.

 V_D bias must be applied to V_D1 , V_D2 , V_D3 , and V_D4 pads.

Both V_D3 pads (6 and 14) are required for current symmetry.

Both V_D4 pads (8 and 12), are required for current symmetry.

A single DC voltage (V_G) will bias all amplifier stages. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2 \text{ V}$).

Die Attachment

This product is manufactured from 0.050 mm (0.002") thick GaAs substrate and has vias through to the backside to enable grounding to the circuit.

Recommended conductive epoxy is Namics Unimec XH9890-6. Epoxy should be applied and cured in accordance with the manufacturer's specifications and should avoid contact with the top of the die.

Operating the MAAP-011358-DIE

Turn-on

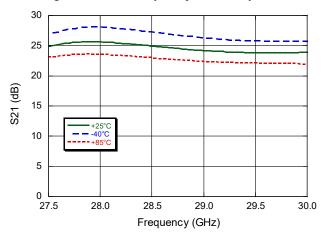
- 1. Apply V_G (-1.5 V).
- 2. Apply V_D (6.0 V typical).
- 3. Set I_{DQ} by adjusting V_G more positive (typically V_{G^*} -0.9 V for I_{DQ} = 3000 mA).
- 4. Apply RF_{IN} signal.

Turn-off

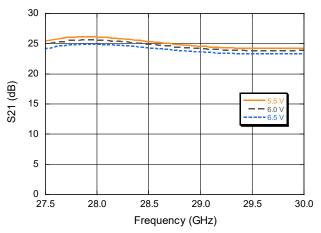
- 1. Remove RF_{IN} signal.
- 2. Decrease V_G to -1.5 V.
- 3. Decrease V_D to 0 V.

Handling Procedures

Please observe the following precautions to avoid damage:

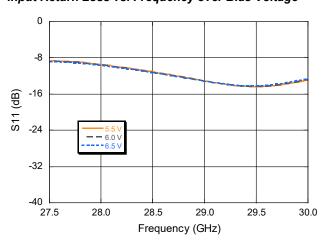

Static Sensitivity

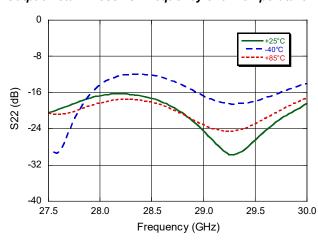
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

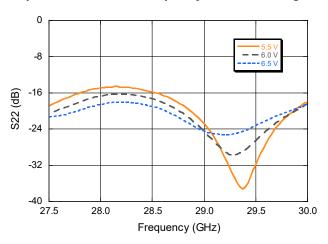


Typical Performance Curves⁹

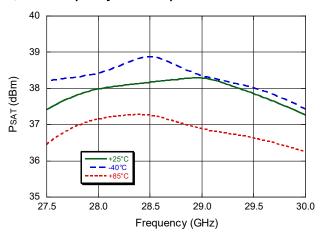
Small Signal Gain vs. Frequency over Temperature

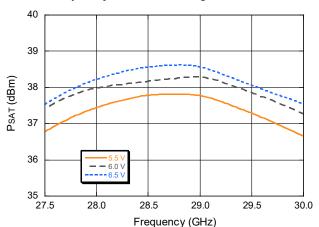

Small Signal Gain vs. Frequency over Bias Voltage


Input Return Loss vs. Frequency over Temperature

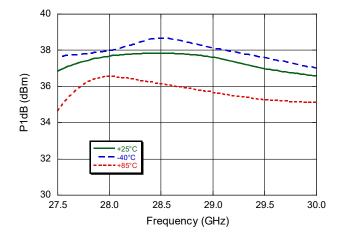

Input Return Loss vs. Frequency over Bias Voltage

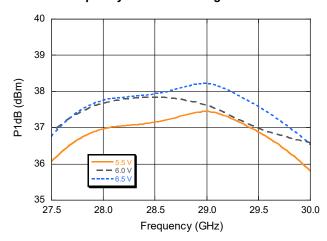
Output Return Loss vs. Frequency over Temperature


Output Return Loss vs. Frequency over Bias Voltage

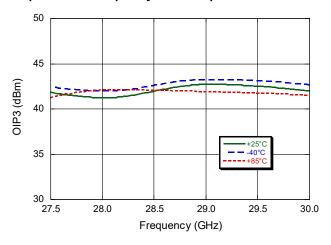


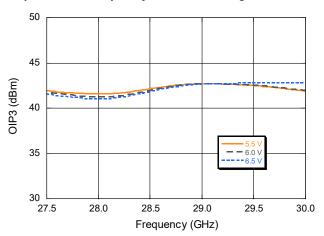
Typical Performance Curves⁹


P_{SAT} vs. Frequency over Temperature

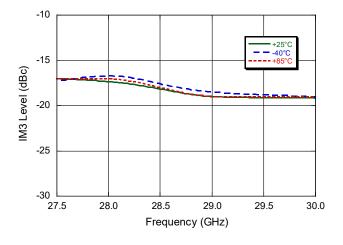

P_{SAT} vs. Frequency over Bias Voltage

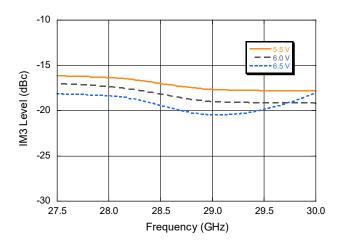
P1dB vs. Frequency over Temperature


P1dB vs. Frequency over Bias Voltage

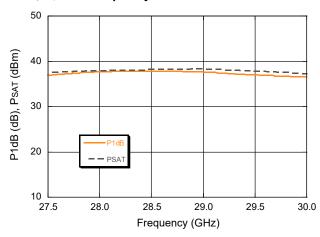


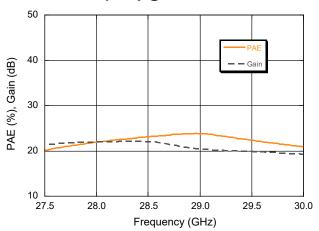
Typical Performance Curves⁹


Output IP3 vs. Frequency over Temperature

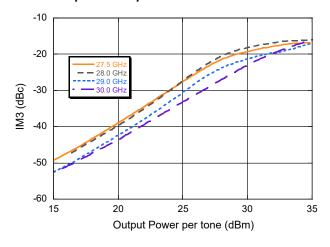

Output IP3 vs. Frequency over Bias Voltage

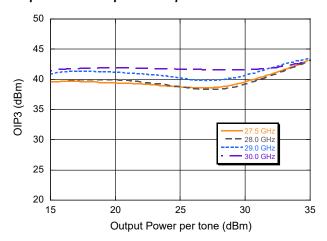
IM3 vs. Frequency over Temperature (P_{OUT} = +33 dBm/Tone)


IM3 vs. Frequency over Bias Voltage (P_{OUT} = +33 dBm/Tone)

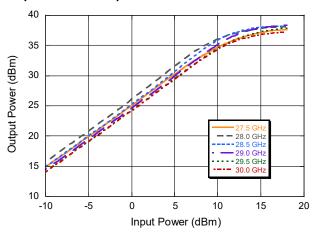


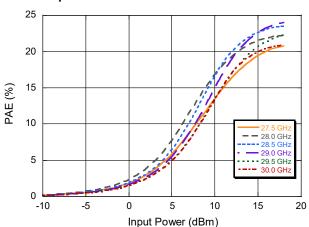
Typical Performance Curves⁹


P1dB, P_{SAT} vs. Frequency

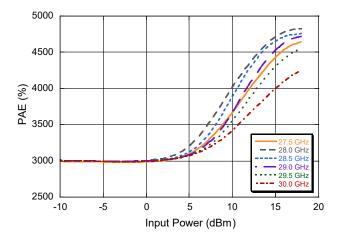

PAE, Gain vs. Frequency @ PSAT

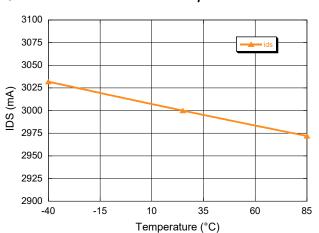
IM3 vs. Output Power per Tone


Output IP3 vs. Output Power per Tone

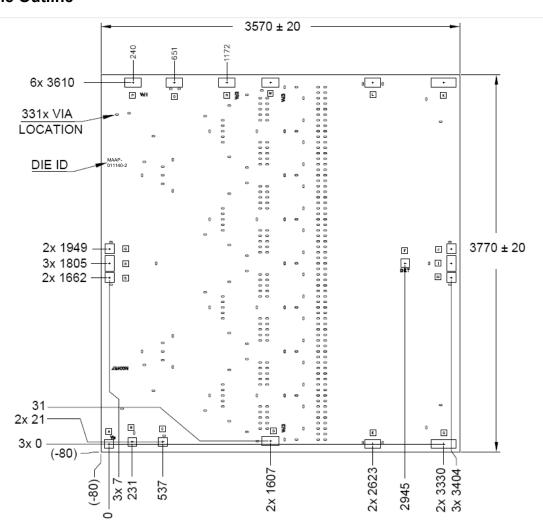


Typical Performance Curves⁹


Output Power vs. Input Power


PAE vs. Input Power

Drain Current vs. Input Power


Quiescent Drain Current over Temperature

9. Typical performance curves are achieved by using the recommended bonding diagram and PCB layout detail.

MMIC Die Outline^{10,11,12}

Bond Pad Detail

Pad	Size (x)	Size (y)
A, B, C	88	88
D, M	169	88
E, L, O	161	88
F	84	84
G, K	249	88
H, J, Q, S	89	99
I, R	89	159
N, P	158	88

- 10. All units are in $\mu m,$ unless otherwise noted, with a tolerance of $\pm 5~\mu m.$
- 11. Die thickness is 50 ±10 μm.
- 12. MAAP-011358-DIE is the product name. DIE ID shown on the DIE is "MAAP-011140-2

Power Amplifier, 6 W 27.5 - 30.0 GHz

MAAP-011358-DIE

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.