0.5 W Ka-Band Amplifier 24 - 30 GHz

MAAP-011319

Rev. V2

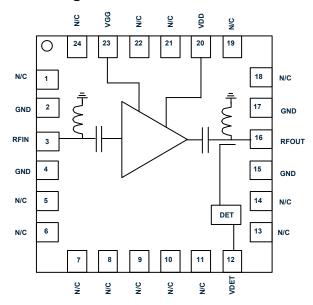
Features

- 24 dB Gain
- 26 dBm P1dB
- 27 dBm P3dB
- 5.5 V Drain Supply
- 4 mm, 24 lead AQFN Package
- RoHS* Compliant

Applications

- 5G
- Satellite Communications

Description


The MAAP-011319 is a 1/2 W Ka-band power amplifier. The PA has a 26 dBm typical P1dB and a 27 dBm typical P3dB with 24 dB of gain. The drain bias supply is 5.5 V. The gate voltage is adjusted to set the drain current to 450 mA.

The MAAP-011319 is designed for medium power applications in the 24 - 30 GHz band. The 4 mm, 24 lead AQFN package is lead free and RoHS compliant.

Ordering Information

Part Number	Package
MAAP-011319-TR1000	1000 Piece Reel
MAAP-011319-TR3000	3000 Piece Reel
MAAP-011319-SMB	Sample Board

Block Diagram

Pin Configuration^{1,2}

Pin #	Pin Name	Description
1,5-11, 13, 14, 18, 19, 21, 22, 24	N/C	No Connect
2,4,15,17	GND	Ground
3	RF _{IN}	RF Input
12	V_{DET}	Detector Voltage
16	RF _{OUT}	RF Output
20	V_{DD}	Drain Voltage
23	V_{GG}	Gate Voltage

- 1. It is recommended that all N/C (No Connect) pins be grounded.
- 2. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

Electrical Specifications: V_{DD} = +5.5 V, I_{DQ} = 450 mA, T_A = 25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	21.0	23.5 25.0	_
Gain Flatness	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	0.5 2.0	_
Input Return Loss	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	15 12	_
Output Return Loss	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB		12 12	_
P1dB	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dBm	_	26 26	_
P3dB	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dBm		27.0 27.5	_
POUT	24 GHz, P _{IN} = 6.9 dBm 30 GHz, P _{IN} = 3.5 dBm	dBm	26.0 25.5	28.0 27.5	_
OIP3	24.0 - 27.5 GHz, 15 dBm/tone, 10 MHz spacing 27.0 - 30.0 GHz, 15 dBm/tone, 10 MHz spacing	dBm		37.0 36.5	_
Noise Figure	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	5 5	
V _{DET}	3 dBm Output Power 26 dBm Output Power	V	_	0.1 1.9	_

Maximum Operating Conditions

Parameter	Maximum
Input Power	8 dBm
V_{DD}	+6 V
V _{GG}	-3 to 0 V
Junction Temperature ^{3,4}	+160°C
Operating Temperature	-40°C to +85°C

3. Operating at nominal conditions with $T_J \le +160^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.

 T_J = 84°C @ 5.5 V, 450 mA, P_{OUT} = 26.6 dBm, P_{IN} = 7 dBm

4. Junction Temp. (T_J) = T_C + Θ jc * ((V * I) - ($P_{OUT} - P_{IN}$)). Typical thermal resistance (Θ jc) = 29.3° C/W. a) For T_C = +85°C and 27 GHz, T_J = 145°C @ 5.5 V, 450 mA, P_{OUT} = 26.3 dBm, P_{IN} = 7 dBm b) For T_C = +25°C and 27 GHz,

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum	
Input Power	10 dBm	
V _{DD}	+6.5 V	
V _{GG}	-5 to 0 V	
Junction Temperature ⁷	+180°C	
Storage Temperature	-55°C to +150°C	

- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

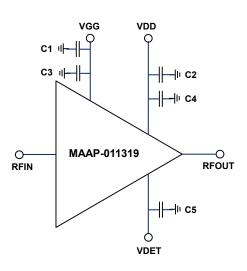
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Rev. V2


Bias Sequence

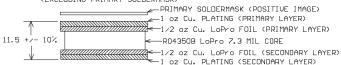
All gate voltages must be applied prior to applying drain voltages.

- 1. Apply V_{GG} (about -1.5 V) to pin 23.
- 2. Apply V_{DD} (+5.5 V) to pin 20.
- Adjust V_{GG} to set I_{DO} to 450 mA.

Shut down by setting $V_{DD} = 0 \text{ V first.}$

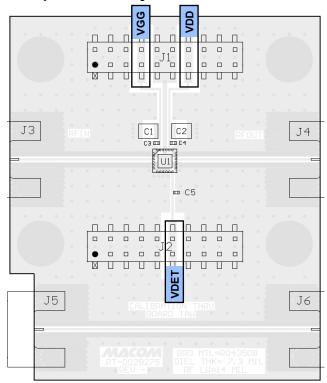
Application Schematic

Parts List

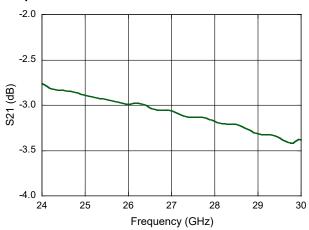

Part #	Value	Case Style	
C1, C2	10 μF	1210	
C3, C4	1000 pF	0402	
C5	1 μF	0402	
J1, J2	100-mil pitch double row DC header		
J3 - J6	Southwest 2.4 mm, 5 mil pin diameter		

Recommended PCB Information

RF input and output are $50~\Omega$ transmission lines on single layer 7.3 mil Rogers RO4350B LoPro with 1.5 oz. Cu. For best thermal management, use as many copper filled vias under the device as physically possible. The filled vias should be plated over. 8 mil diameter vias in a 5 x 5 array are used on this sample board.


PCB Layout Stack-Up

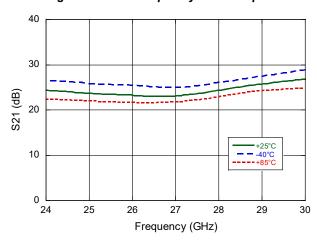
BOARD DIELECTRIC / COPPER STACKUP FINISHED BOARD THICKNESS (EXCLUDING PRIMARY SOLDERMASK)

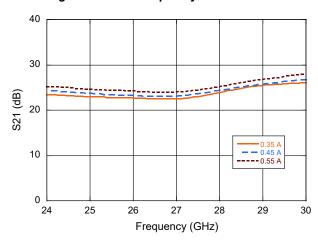


Finished board thickness is in mils

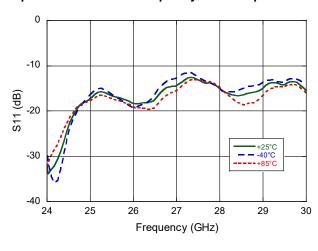
Sample Board Layout

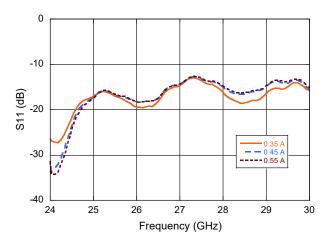
Sample Board Thru Line Loss

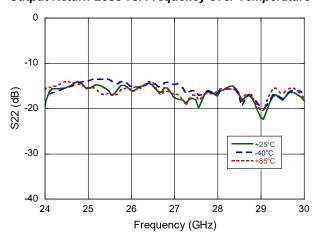


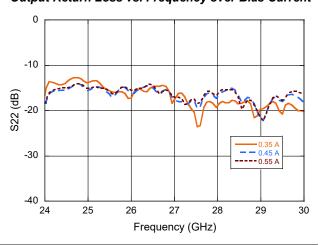

Rev. V2

Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$


Small Signal Gain vs. Frequency over Temperature


Small Signal Gain vs. Frequency over Bias Current

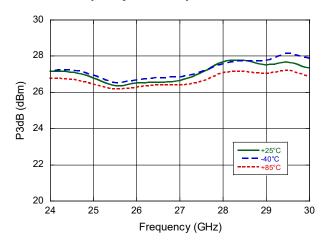

Input Return Loss vs. Frequency over Temperature

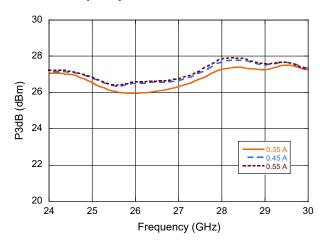

Input Return Loss vs. Frequency over Bias Current

Output Return Loss vs. Frequency over Temperature

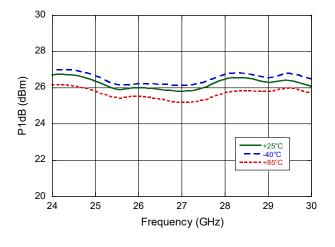
Output Return Loss vs. Frequency over Bias Current

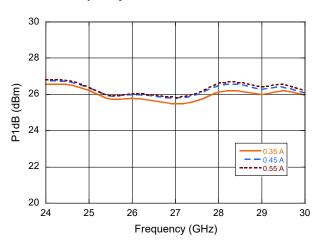
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.


Rev. V2

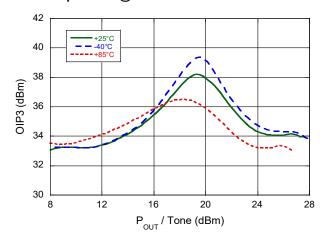
Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$

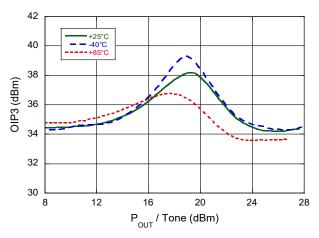

P3dB vs. Frequency over Temperature


P3dB vs. Frequency over Bias Current

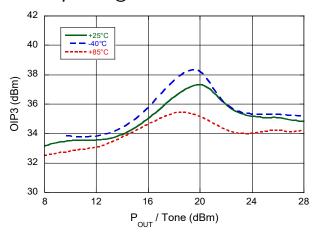
P1dB vs. Frequency over Temperature

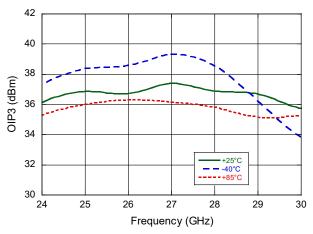
P1dB vs. Frequency over Bias Current

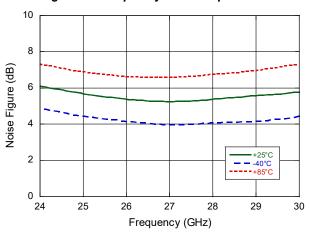



Rev. V2

Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$


Output IP3 vs. Output Power over Temperature @ 25 GHz


Output IP3 vs. Output Power over Temperature @ 27 GHz

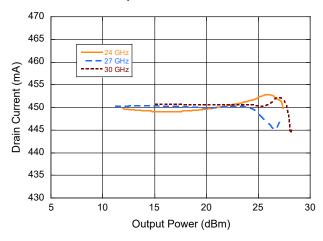

Output IP3 vs. Output Power over Temperature @ 29 GHz

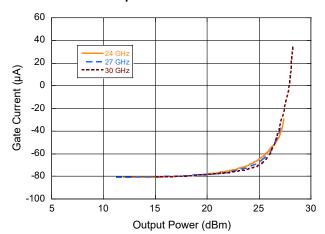
Output IP3 vs. Frequency over Temperature @ 19 dBm/TONE

Noise Figure vs. Frequency over Temperature

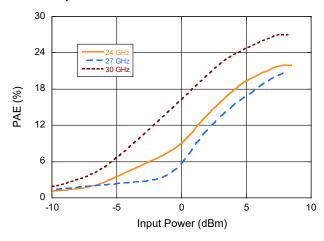
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

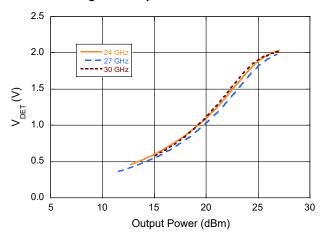
Visit www.macom.com for additional data sheets and product information.


6

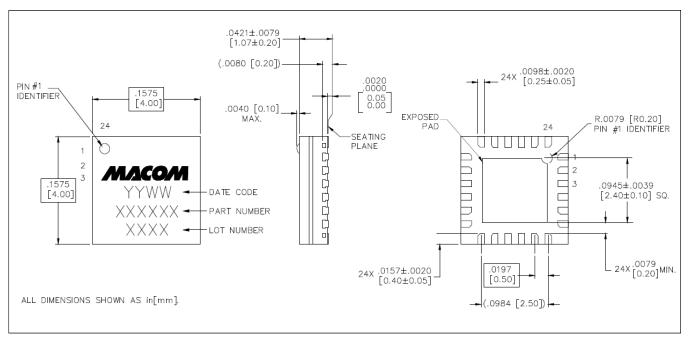

Rev. V2

Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$


Drain Current vs. Output Power


Gate Current vs. Output Power

PAE vs. Input Power


Detector Voltage vs. Output Power

Rev. V2

Lead-Free 4 mm 24-Lead AQFN Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu

0.5 W Ka-Band Amplifier 24 - 30 GHz

MAAP-011319

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.