

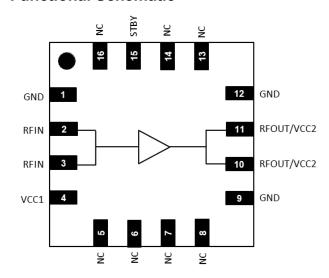
Features

- Driver Amplifiers with Simple Bias Control Circuit
- 3.3 3.8 GHz Operation Frequency
- No External Matching Components Required
- Gain: 17 dB
- Output P1dB: 26 dBm
- Output P3dB: 27 dBm
- Output IP3: 40 dBm
- Single supply voltage: 5 V
- Supply current: 116 mA
- Logic voltage: 1.8 V
- Lead-Free 3 mm 16 Lead SMT Package
- RoHS* Compliant

Applications

- 5G Massive MIMO
- Small Cell BTS
- · Wireless Infrastructure
- Multi Market

Description


The MAAM-011324 is a wideband high linearity driver amplifier packaged in a compact 3 mm 16-Lead QFN package. This driver amplifier provides 17 dB gain and 26 dBm OP1dB with 116 mA quiescent current and device ON/OFF function to support TDD system application. RF input and output ports are internally matched at the entire operating frequency range of 3.3 - 3.8 GHz.

Ordering Information¹

Part Number	Package
MAAM-011324-TR1000	1k reel
MAAM-011324-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Names²

Pin#	Function	
1,9,12	GND	
2,3	RFIN	
4	VCC1	
5 - 8, 13, 14, 16	No Connection ²	
10,11	RFOUT/VCC2	
15	STBY	
17	Paddle ³	

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Driver Amplifier 0.5 W, 3.3 - 3.8 GHz

MAAM-011324 Rev. V1

Pin Description

Pin#	Name	description		
1	GND	This pin is grounded internally		
2	RFIN	his pin is dc grounded with shunt matching inductor. A dc-blocking capacitor is required on this pin.		
3	RFIN	his pin is dc grounded with shunt matching inductor. A dc-blocking capacitor is required on this pin.		
4	VCC1	Supply Voltage. Place bypass capacitor as close to pin as possible.		
5	NC	Not connected internally		
6	NC	Not connected internally		
7	NC	Not connected internally		
8	NC	Not connected internally		
9	GND	This pin is grounded internally		
10	RFOUT/ VCC2	Supply Voltage through a choke coil. DC-blocking capacitor is required following the choke coil.		
11	RFOUT/ VCC2	Supply Voltage through a choke coil. DC-blocking capacitor is required following the choke coil.		
12	GND	This pin is grounded internally		
13	NC	Not connected internally		
14	NC	Not connected internally		
15	STBY	Supply ON/OFF logic control voltage		
16	NC	Not connected internally		

Electrical Specifications:

Freq. = 3.5 GHz, P_{IN} = -20 dBm, T_C = +25°C, V_{CC1} = V_{CC2} = +5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	3.3 GHz 3.5 GHz 3.8 GHz	dB	 15 	17.6 17.3 16.3	_
Gain Flatness	3.3 - 3.8 GHz	dB	_	1.0	_
Dynamic Gain Variation	$P_{IN} = -2 \text{ dBm},$ $P_{IN} = -17 \text{ dBm}$	dB	_	0.3	_
Output P1dB	3.5 GHz	dBm	_	26	_
Output IP3	3.5 GHz, $\Delta f = 10$ MHz P _{IN} /tone = -5 dBm	dBm	_	40	_
Output IP3	3.5 GHz, $\Delta f = 200 \text{ MHz}$ P _{IN} /tone = -5 dBm	dBm	_	37	_
Raw Linearity (ACPR)	P _{IN} = -2 dBm	dBc	_	57.7	_
Input Return Loss	_	dB	_	12	_
Output Return Loss	_	dB		12	_
Noise Figure	_	dB	_	4.5	_
Power Consumption	VCC1, RFOUT/VCC2 P _{IN} =-2 dBm, Active state	W	_	0.58	_
Power Consumption	VCC1, VCC2, RFOUT P _{IN} = -2 dBm, Standby state	W	_	0.01	_

DC Electrical Specifications: $V_{CC1} = V_{CC2} = +5 \text{ V}$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Standby to Active Mode Settling Time	RFIN to RFOUT gain settled within 0.1 dB of final value after STBY command	ns	_	300	_
Active to Standby Mode Settling Time	RFIN to RFOUT signal reduced at least 30 dB after STBY command	ns		300	_
Supply Voltage	VCC1, VCC2	V	4.75	5	5.25
Supply Current	VCC1, RFOUT/VCC2	mA	_	116	_
Logic Control Voltage	Logic High, STBY Logic Low, STBY	V	1.17 0	_	3.3 0.63
Logic input Current	Logic High/Low, STBY	mA	-10	_	10

Truth Table

PIN	Device Control		
CTDV	Logic High	Device Active Mode	
STBY	Logic Low	Device Standby Mode	

MAAM-011324

Rev. V1

Recommended Operating Conditions

Parameter	Operation Conditions	
DC Supply VDD	4.75 V to 5.25 V	
Operating Temperature ⁴	-10°C to +110°C	

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

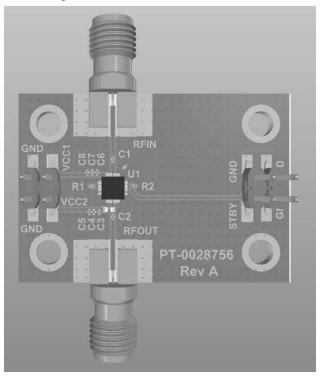
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HMB Class 1C and CDM Class C3 devices.

Absolute Maximum Ratings^{5,6}

Parameter	Unit
Input Average Power	26 dBm
DC Supply VCC	-0.5 V to 6.0 V
Logic Control Voltage	-0.5 V to 3.6 V
Junction Temperature ^{7,8}	+150°C
Functional Temperature	-40°C to +125°C
Storage Temperature	-65°C to +150°C

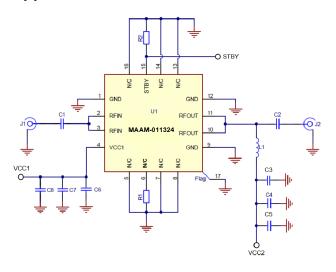
- 4. Tc is defined by exposed paddle temperature.
- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 7. Operating at nominal conditions with $T_J \le +150~^{\circ}\text{C}$ will ensure MTTF > 1 x 10^6 hours.
- 8. Junction Temperature (T_J) = T_C + Θ jc * (V * I) Typical thermal resistance (Θ jc) = 59.0 °C/W. a) For T_C = +25°C, T_J = 57.4 °C @ 5 V, 110 mA

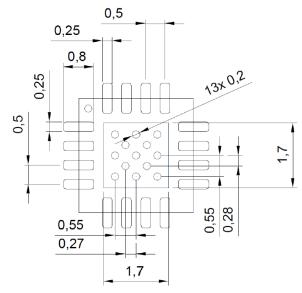
b) For $T_c = +110^{\circ}C$,


T_J = 148.3 °C @ 5 V, 130 mA

MAAM-011324

Rev. V1

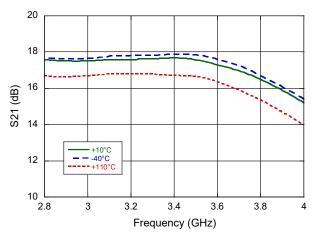

PCB Layout

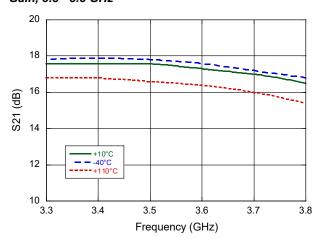

Parts List

Part	Value	Case Style
C1	1 pF	0201
C2	24 pF	0201
C3	100 pF	0201
C4	100 nF	0201
C5	DNP	0201
C6	100 pF	0201
C7	100 nF	0201
C8	DNP	0201
L1	6.8 nH	0402
R1	DNP	0201
R2	1 kΩ	0201
J1 - J2	142-0761-841	SMA, End Launch

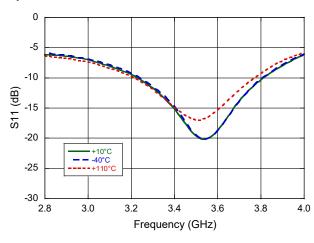
Application Schematic

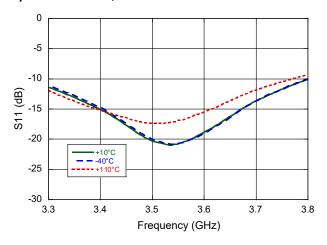
Recommended Thermal Land Pattern

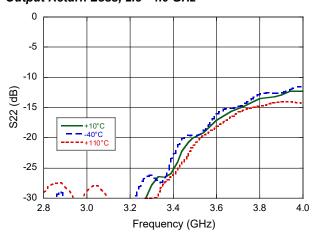

- 13 Ground Vias
- 0.2 mm Diameter, 1/2 oz. Copper


Typical Performance Curves:

P_{IN} = -20 dBm, V_{CC1} = V_{CC2} = +5 V, Z_0 = 50 Ω (unless otherwise stated)


Gain, 2.8 - 4.0 GHz

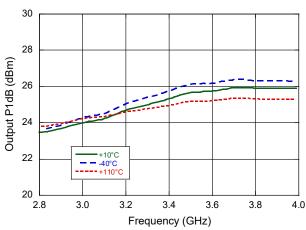

Gain, 3.3 - 3.8 GHz

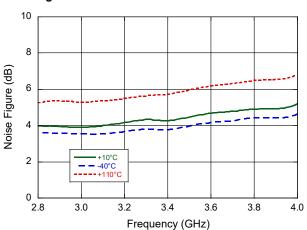

Input Return Loss, 2.8 - 4.0 GHz

Input Return Loss, 3.3 - 3.8 GHz

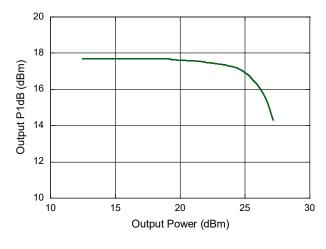
Output Return Loss, 2.8 - 4.0 GHz

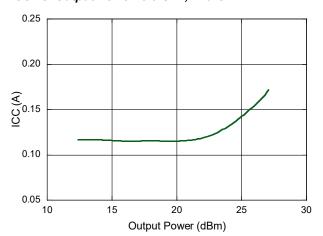
Output Return Loss, 3.3 - 3.8 GHz



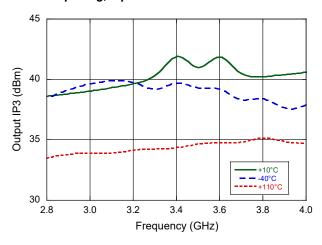

Typical Performance Curves

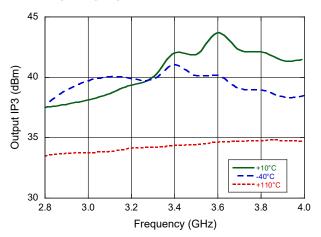
 $V_{CC1} = V_{CC2} = +5 \text{ V}, Z_0 = 50 \Omega \text{ (unless otherwise stated)}$


Output P_{1dB}

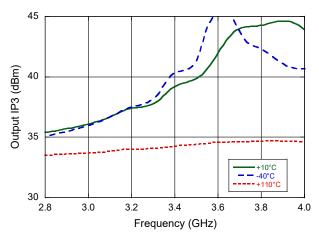

Noise Figure

Gain vs. Output Power: 3.5 GHz, +25°C

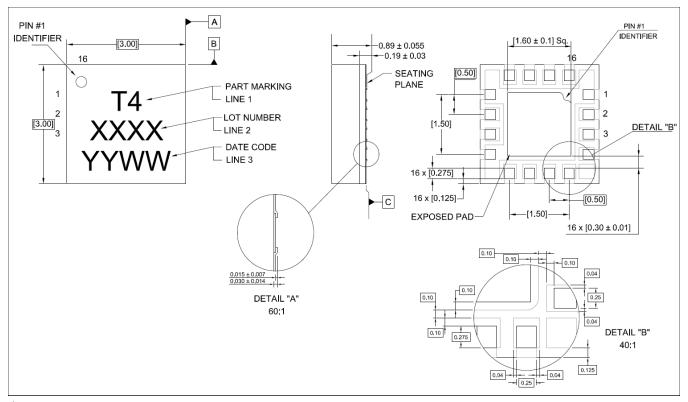

ICC vs. Output Power: 3.5 GHz, +25°C



Typical Performance Curves: $V_{CC1} = V_{CC2} = +5 \text{ V}$, $Z_0 = 50 \Omega$ (unless otherwise stated)


Output IP3 10 MHz Spacing, Input Power = -15 dBm/tone

Output IP3 10 MHz Spacing, Input Power = -10 dBm/tone



Output IP3 10 MHz Spacing, Input Power = -5 dBm/tone

Lead-Free 3 mm 16-Lead SMT[†]

Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 3 requirements in accordance to JEDEC J-STD-020D. Plating is NiPdAu over copper

Driver Amplifier 0.5 W, 3.3 - 3.8 GHz

MAAM-011324

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.