

MAAM-011252-CQ3

Rev. V1

Features

- 19.5 dB Flat Broadband Gain to 8 GHz
- Low Noise Figure:

1.4 dB Noise Figure to 1.5 GHz

1.5 dB Noise Figure @ 6 GHz

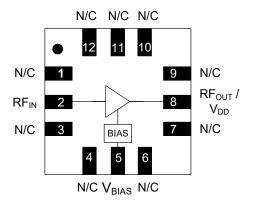
2.0 dB Noise Figure @ 8 GHz

High Linearity OIP3:

34 dBm @ 2.5 GHz

32 dBm @ 6 GHz

22 dBm @ 8 GHz


- Internal Matching to 50 ohm
- Single Voltage Bias: 3 5 V
- Integrated Active Bias Circuit
- Current Adjustable 20 100 mA
- Lead-Free 3 mm 12-Lead Hermetic Ceramic Package
- RoHS* Compliant

Description

The MAAM-011252-CQ3 is a broadband high dynamic range, single stage MMIC LNA assembled in a lead-free 3 mm 12-Lead hermetic ceramic package. The amplifier is internally matched to provide flat gain and good return losses to 8 GHz without any external matching components.

This low noise amplifier has an integrated active bias circuit allowing direct connection to 3 V or 5 V bias and minimizing variations over temperature and process. The bias current can be set by an optional external resistor, so the user can customize the power consumption to fit the application. V_{BIAS} can be utilized as an enable pin to power the device up and down during operation.

Functional Block Diagram

Pin Configuration^{1,2}

Pin#	Pin Name	Description
1, 3, 4, 6, 7, 9 - 12	N/C	No Connection
2	RF _{IN}	RF Input
5	V _{BIAS}	Bias Voltage
8	RF _{OUT} /V _{DD}	RF Output / Drain Voltage

- MACOM recommends connecting all No Connection (N/C) pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package	
MAAM-011252-CQ3	Bulk	
MAAM-011252-CQS	Sample Board	

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAM-011252-CQ3 Rev. V1

Electrical Specifications: $V_{DD} = 5 \text{ V}$, +25°C, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Мах.
Gain	0.03 - 8 GHz	dB	17	19.5	_
Noise Figure	0.1 - 1.5 GHz 6.0 GHz 8.0 GHz	dB	_	1.4 1.5 2.0	1.8 2.3 —
Input Return Loss	0.03 - 8 GHz	dB		12	_
Output Return Loss	0.03 - 8 GHz	dB	_	12	_
Output IP3	P _{IN} = -15 dBm per tone, 6 MHz spacing 0.03 - 2.5 GHz 6 GHz 8 GHz	dBm	_	34 32 22	_
Output IP2	P _{IN} = -15 dBm per tone, 6 MHz spacing 0.03 - 3 GHz 6 GHz 8 GHz	dBm	_	42 46 42	_
Output P1dB	0.03 - 3 GHz 6 GHz 8 GHz	dBm	_	20 17 11	_
Current	I _{DD}	mA	_	65	75

Recommended Operating Conditions

Parameter	Maximum
RF Input Power CW	10 dBm
V _{DD}	6 V
I _{DQ}	100 mA
Operating Temperature	-40°C to +85°C
Junction Temperature ^{3,4}	+150°C

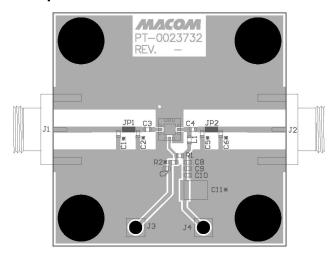
^{3.} Operating at nominal conditions with $T_J \le 150^{\circ}C$ will ensure MTTF > 1 x 10^{6} hours.

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum		
RF Input Power CW	22.5 dBm		
V _{DD}	7 V		
Storage Temperature	-55°C to +150°C		

^{5.} Exceeding any one or combination of these limits may cause permanent damage to this device.

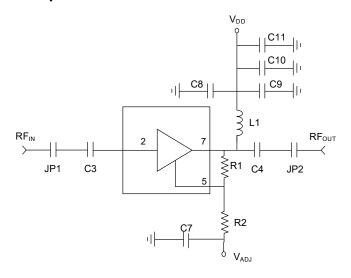
^{4.} Junction Temperature (T_J) = T_C + Θ _{JC} * ((V * I) - (P_{OUT} - P_{IN})) Typical thermal resistance (Θ _{JC}) = 43°C/W


MACOM does not recommend sustained operation near these survivability limits.

MAAM-011252-CQ3

Rev. V1

Sample Board



Sample Board Parts List⁷

Component	Value	Package
C1, C2, C5, C6, C7, C11	DNP ⁹	_
C3, C4, C9	1000 pF	0402
C8	47 pF	0402
C10	0.1 μF	0402
JP1, JP2	0 Ω	0402
R1, R2	DNP ⁹	0402
L1	Ferrite Bead ⁸	0402

- Typical application.
- Murata, part number BLM15HD182SN. Do not populate. 8.

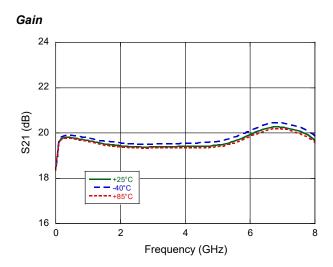
Sample Board Schematic

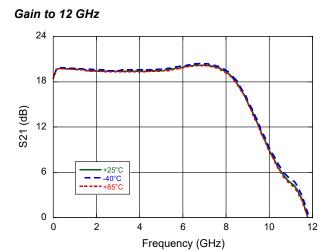
Handling Procedures

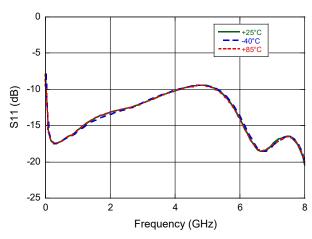
Please observe the following precautions to avoid damage:

Static Sensitivity

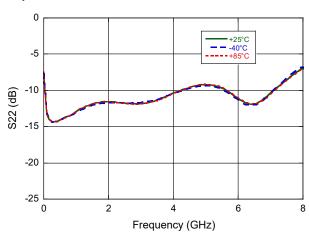
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

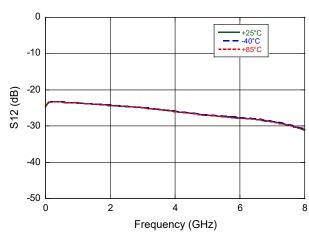

Pin Description

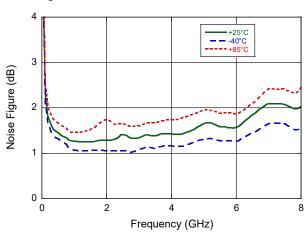

Pin#	Pin Name	Description
1,3,4,6,7,9	N/C	No internal connection. Grounding this pin on the board is recommended to maximize isolation.
2	RF _{IN}	RF Input, an external DC block is required
5	V _{BIAS}	Optional Bias Voltage may be applied to adjust current. If the typical bias current is desired, leave this pin open.
8	RF _{OUT} / V _{DD}	RF Output / Drain Voltage, external bias tee required (see next page)
	Paddle	Ground with as many board vias as practical, stating at the perimeter of the paddle


MAAM-011252-CQ3 Rev. V1

Typical Performance Curves @ 5 V / 65 mA, $Z_0 = 50 \Omega$



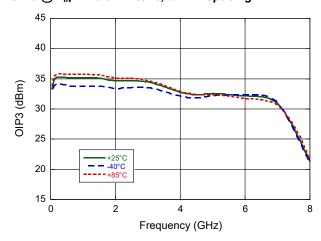

Input Return Loss

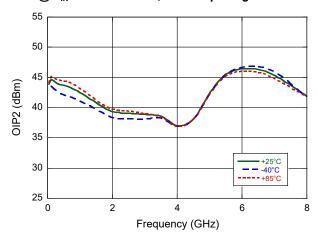


Reverse Isolation

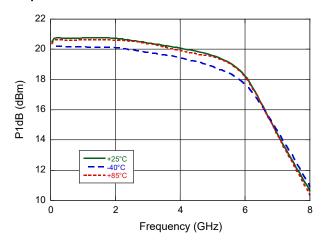
Noise Figure

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

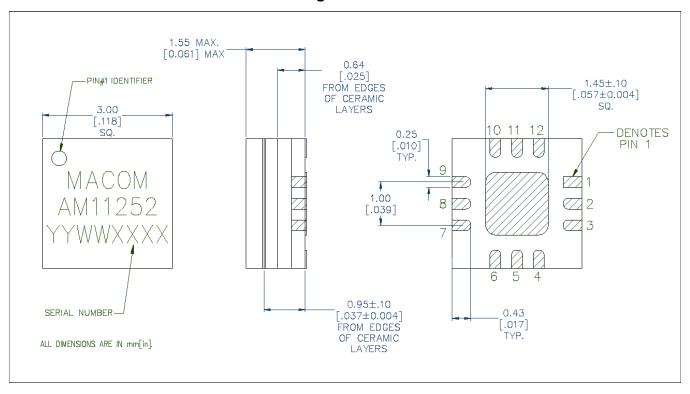

Visit www.macom.com for additional data sheets and product information.


MAAM-011252-CQ3 Rev. V1

Typical Performance Curves @ 5 V / 65 mA, Z_0 = 50 Ω


OIP3 @ P_{IN} = -15 dBm/tone, 6 MHz Spacing

OIP2 @ P_{IN} = -15 dBm/tone, 6 MHz Spacing


Output P1dB

MAAM-011252-CQ3 Rev. V1

Lead-Free 3 mm 12-Lead Ceramic Package[†]

[†] Plating is ENEPIG Reference Application Note S2083 for surface mount instructions

MAAM-011252-CQ3

Rev. V1

$\label{eq:MACOM} \mbox{MACOM Technology Solutions Inc. ("MACOM")}. \mbox{ All rights reserved}.$

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.