

FTTx RF Amplifier 50 - 1000 MHz

Rev. V5

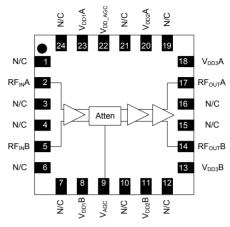
Features

- -8 dBm to +2 dBm Optical Input Range
- Low Equivalent Input Noise (EIN): 4.8 pA/rtHz
- 5 V Bias
- 37 dB Gain; Flat from 55 MHz to 1000 MHz
- 25 dB Gain Control Range
- 20 dBmV/ch Flat Output
- Lead-Free 4 mm PQFN-24LD Plastic Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant

Description

The MAAM-008863 provides high gain, low noise and low distortion amplification of the downstream CATV signal in fiber-to-the-home (FTTH) applications. This device is ideally suited for interfacing with the RF video output of optical triplexers used within optical network terminals (ONTs).

The MAAM-008863 is fabricated using MACOM's low noise GaAs pHEMT technology in a lead-free 4 mm 24-lead package. The amplifier requires a minimal number of off-chip components resulting in a highly integrated low cost solution.


Ordering Information ^{1,2}

Part Number	Package
MAAM-008863-TR1000	1000 Piece Reel
MAAM-008863-TR3000	3000 Piece Reel
MAAM-008863-002SMB	Sample Test Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample kits include photodiode and 5 loose parts.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Functional Schematic

Pin Configuration³

Pin No.	Pin Name	Description		
1	N/C	No Connection		
2	RF _{IN} A	RF Input A		
3	N/C	No Connection		
4	N/C	No Connection		
5	RF _{IN} B	RF Input B		
6	N/C	No Connection		
7	N/C	No Connection		
8	$V_{DD}1B$	5 V Bias Voltage		
9	V_{AGC}	AGC Control Voltage: 0 V to 3 V		
10	N/C	No Connection		
11	$V_{DD}2B$	5 V Bias Voltage		
12	N/C	No Connection		
13	V _{DD} 3B	5 V Bias Voltage		
14	$RF_{OUT}B$	RF Output B		
15	N/C	No Connection		
16	N/C	No Connection		
17	$RF_{OUT}A$	RF Output A		
18	$V_{DD}3A$	5 V Bias Voltage		
19	N/C	No Connection		
20	V _{DD} 2A	5 V Bias Voltage		
21	N/C	No Connection		
22	V _{DD_AGC}	5 V AGC Bias Voltage		
23	V _{DD} 1A	5 V Bias Voltage		
24	N/C	No Connection		
25	Paddle	RF and DC Ground		

The exposed pad centered on the package bottom must be connected to RF and DC ground.

1

Rev. V5

Electrical Specifications⁴: $T_A = 25$ °C, $V_{DD} = 5$ Volts, $Z_0 = 75$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
	50 MHz		36.2	38.2	40.2
Gain @ AGC = 3 V	870 MHz	dB	36.9	38.9	40.9
	1000 MHz		36.8	38.8	40.8
	50 MHz		36.3	38.3	40.3
Gain @ AGC = 1.3 V	870 MHz	dB	37.4	39.4	41.4
	1000 MHz		34.9	36.9	38.9
	50 MHz		35.5	37.5	39.5
Gain @ AGC = 1 V	870 MHz	dB	35.0	37.0	39.0
	1000 MHz		34.8	36.8	38.8
	50 MHz		23.5	26.0	28.5
Gain @ AGC = 0.5 V	870 MHz	dB	23.9	26.4	28.9
	1000 MHz		23.3	25.8	28.3
	50 MHz		10.3	12.3	14.3
Gain @ AGC = 0 V	870 MHz	dB	11.5	13.5	15.5
	1000 MHz		11.8	13.8	15.8
Gain Tilt	Within AGC control voltage range	dB	-	0	-
AGC Control Voltage Range	_	V	0	-	3
EIN	_	pA/rtHz	-	4.8	-
Output Return Loss	_	dB	-	16	-
CTB⁵	79 channels	dBc	-	-61	-
CSO⁵	79 channels	dBc	-	-62	-
Current Consumption	5 V V _{DD}	mA	-	220	250

^{4.} Performance is specified using JDSU Photodiode EPM-745 or equivalent (EPM705) and output balun # MABA-009210-CT1760.

Absolute Maximum Ratings^{6,7}

Parameter	Absolute Maximum	
Input Power	3 dBm Optical	
Operating Voltage	15 volts	
AGC Voltage	5 volts	
Operating Temperature	-40°C to +85°C	
Junction Temperature ^{8,9}	+150°C	
Storage Temperature	-65°C to +150°C	

- 6. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 8. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 9. Junction Temperature (T_J) = T_C + Θ jc * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ jc) = 19°C/W.

a) For $T_C = 25$ °C,

 $T_J = 46 \, ^{\circ}\text{C} \ @ 5 \, \text{V}, 220 \, \text{mA}$

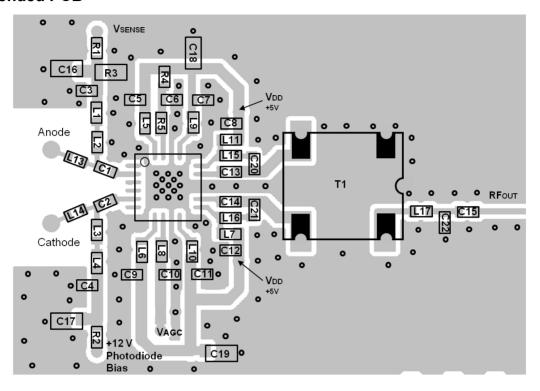
b) For $T_C = 85^{\circ}C$,

 $T_J = 106 \, ^{\circ}\text{C} \ @ 5 \, \text{V}, 220 \, \text{mA}$

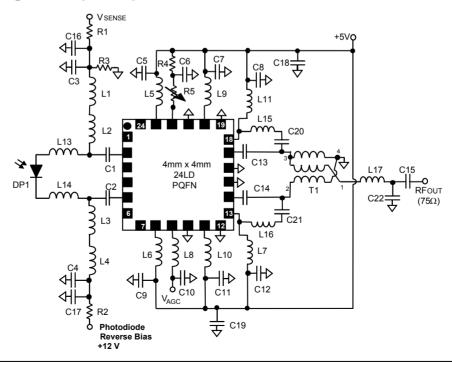
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

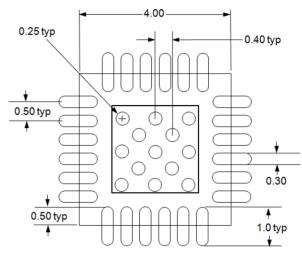
^{5.} OMI = 3.5%; P_{OUT} = 20 dBmV/ch; Optical input power range: -8 dBm to +2 dBm.



Rev. V5

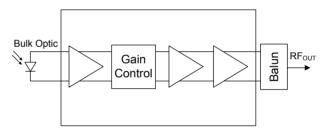
Recommended PCB

Schematic Including Off-Chip Components


Rev. V5

Parts List

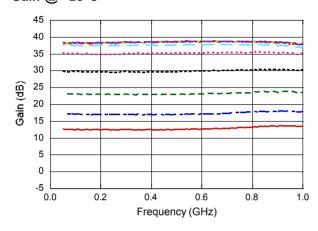
Component	Value	Case Style
L1 - L11 ¹⁰	Ferrite Bead	0402
L13 - L14	18 nH wire wound	0402
L15 - L16	15 nH	0402
L17	4.7 nH	0402
C1 - C15	0.01 μF	0402
C16 - C19	1 µF	0603
C20,C21	1.2 pF	0402
C22	0.6 pF	0402
R1	1 kΩ	0402
R2	200 Ω	0402
R3	1 kΩ	0603
R4	270 Ω	0402
R5 ¹¹	120 Ω, 3300 ppm/°C	0402
T1 ¹²	1:1 Balun	SM-118A
DP1	Photodiode	T08


- 10. Ferrite Bead from Murata, part number BLM15HD182SN
- 11. R5 is a 120 Ω , 0402 thermistor, 3300 ppm/°C. Part number is ERA-W33J121X from Panasonic.
- 12. MACOM MABA-009210-CT1760 1:1 T_x Line Balun

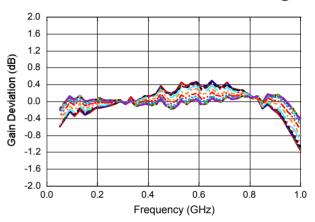
PCB Land Pattern

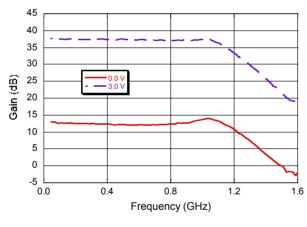
All dimensions in mm.

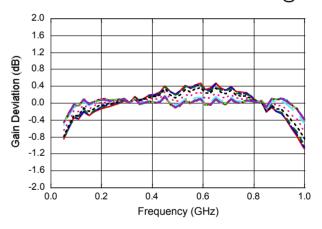
Application Schematic

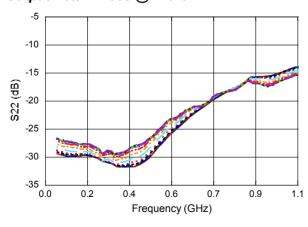

FTTx RF Amplifier 50 - 1000 MHz

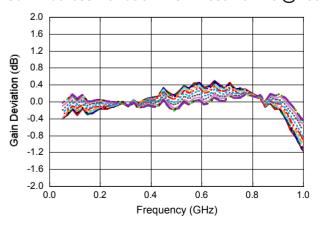
Rev. V5


Typical Performance Curves: V_{AGC}: 0 V to 3 V in 0.2 V Steps


Gain @ +25°C

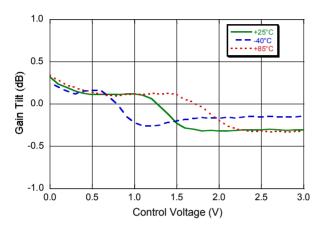

Gain Flatness Deviation From Best Fit Line @ +25°C

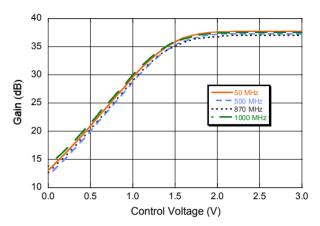

Gain vs. Frequency to 1.6 GHz @ +25°C


Gain Flatness Deviation From Best Fit Line @ -40°C

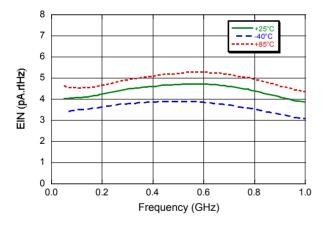
Output Return Loss @ +25°C

Gain Flatness Deviation From Best Fit Line @ +85°C



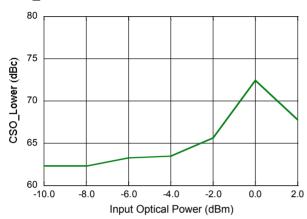

Rev. V5

Typical Performance Curves

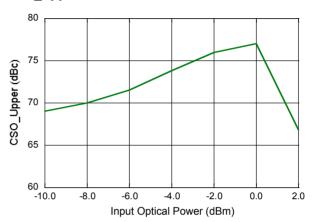

Gain Tilt Deviation From Average Tilt; Over Temp V_{AGC} : 0 V to 3 V in 0.2 V Steps

Gain vs. V_{AGC}; At 4 Frequencies VAGC: 0 V to 3 V in 0.2 V Steps

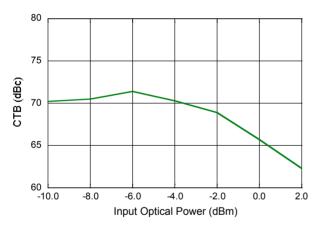
Equivalent Input Noise; Over Temp; At Max Gain; V_{AGC} = 3 V



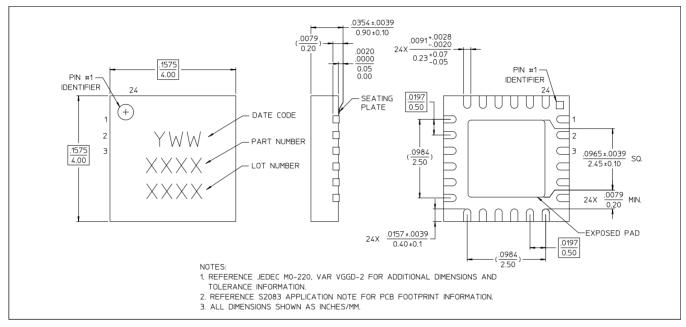
FTTx RF Amplifier 50 - 1000 MHz


Rev. V5

Typical Performance Curves: 79 Channels; NTSC Frequency Plan, Pout = 20 dBmV/ch


CSO_Lower

CSO_Upper


CTB

Rev. V5

Lead Free 4 mm 24-lead PQFN[†]

[†] Reference Application Note S2082 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

FTTx RF Amplifier 50 - 1000 MHz

Rev. V5

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.