

MAAL-011264

Rev. V1

Features

Low Noise Figure: 1.6 dB

Gain: 26 dB

Bias Voltage: V_{DD} = 2 V
 Bias Current: I_{DSQ} = 12 mA

• 50 Ω Matched Input and Output

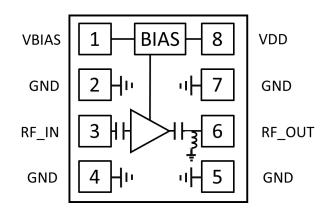
2 x 2 mm DFN Package

RoHS* Compliant

Applications

- Satellite Communications
- Low Earth Orbit Space Payloads
- GEO High Throughput Satellite
- Radar
- EW

Description


The MAAL-011264 is an easy to use low noise amplifier. It operates from 27 to 31.5 GHz and provides 1.6 dB noise figure, 26 dB gain and a P1dB of 1.5 dBm. The input and output are fully matched to 50 Ω with typical return loss >12 dB. This part is packaged in a 2 mm DFN 8-Lead Package.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

The MAAL-011264 can be used as an ultra-low power dissipation low noise amplifier stage or as a driver stage in higher power applications. This device is ideally suited for Ka-band communication systems.

It is also available in part die form under part number MAAL-011264-DIE.

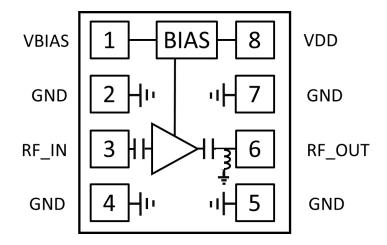
Functional Schematic

Pin Configuration

Pin#	Function	Description
1	VBIAS	Bias Voltage
2, 4, 5, 7	GND	Ground
3	RF _{IN}	RF Input
6	RF _{OUT}	RF Output
8	VDD	Drain Supply
Paddle ²	GND	Exposed Bottom Pad

The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information¹


Part Number	Package
MAAL-011264-TR3000	3000 piece reel
MAAL-011264-SB1	Sample Board

^{1.} Reference Application Note M513 for reel size information.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Pin Configuration and Functional Description

Pin#	Pin Name	Description
1	VBIAS	A voltage can be applied to this pin to set the required IDSQ as described in the application section
2,4,5,7	GND	These pins are grounded internally. It is recommended these are grounded on the application PCB.
3	RF_IN	RF Signal Input. This pad is matched to 50 Ω and is AC coupled
6	RF_OUT	RF Signal Output. This pad is matched to 50 Ω and is AC coupled. There is a shunt inductor to ground providing a DC ground path.
8	VDD	Drain bias for the amplifier. External bypass capacitors are required as described in the applications schematic.
Bottom	Paddle	RF, DC and thermal ground

Maximum

-22 dBm

3.5 V

+150°C

-40°C to +85°C

MAAL-011264

Rev. V1

Electrical Specifications: Freq. = 27.0 - 31.5 GHz, T_A = 25°C, V_D = +2.0 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Small Signal Gain	P _{IN} = -30 dBm 27.0 GHz 31.5 GHz	dB	24 23	27 27	_
Small Signal Gain Variation over Temperature	_	dB/°C	_	0.06	_
Gain Flatness	_	dB	_	0.5	_
Noise Figure	_	dB	_	1.6	_
Input Return Loss	_	dB	_	12	_
Output Return Loss	_	dB	_	12	_
P1dB	27.0 GHz 31.5 GHz	dBm	-3 -1	1.5 4	_
Output 3rd Order Intercept	_	dBm	_	10	_
Supply Current	_	mA	_	12	_

Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum
Input Power	+18 dBm
Drain Voltage	4.5 V
Junction Temperature ^{5,6}	+165°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +125°C

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 4. MACOM does not recommend sustained operation near these survivability limits.
- 5. Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1×10^6 hours.
- 6. Junction Temperature (T_J) = T_C + Ojc * (V * I) Typical thermal resistance (Ojc) = 100 °C/W. a) For $T_C = +25^{\circ}C$, $T_J = 27.4 ^{\circ} C @ 2 V, 12 mA$ b) For $T_C = +85 ^{\circ} C,$ $T_J = 87.4 ^{\circ} C @ 2 V, 12 mA$

Parameter

TX Input Power

Drain Voltage

Junction Temperature^{5,6}

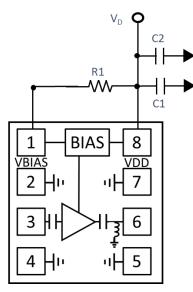
Operating Temperature

Handling Procedures

Maximum Operating Conditions

Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A (250 V), CDM Class C2a (500 V) devices.

MAAL-011264

Rev. V1

Application Schematic

Parts List

Part	Value	Case Style
C1	100 pF	0402
C2	0.1 μF	0402
R1	-	0402

Application Circuit and Operation

The basic application circuit is shown below. Place C1 capacitor as close to the package as physically possible. The position of the C2 capacitor is not as critical but should also be placed as closely as practically possible.

To ensure proper grounding the number of ground vias under the device should be maximized (within practical limits imposed by the PCB vendor).

Set IDQ by adjusting R1

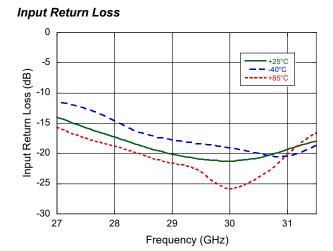
The value of R1 sets IDQ according to the table below:

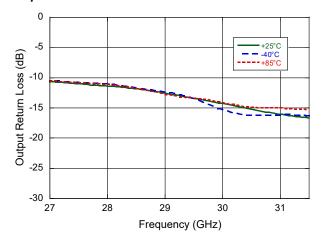
R1 (Ω)	IDQ (mA)
6k	6
4.3k	8
2.8k	10
2.25k	12
1.55k	14
1.33k	16
1.1k	18
920	20
800	22
700	24

Operating the MAAL-011264 Turn-on

- 1. Apply V_D (+2 V)
- 2. Apply RF_{IN} signal

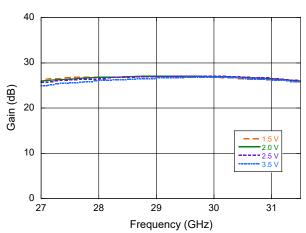
Turn-off

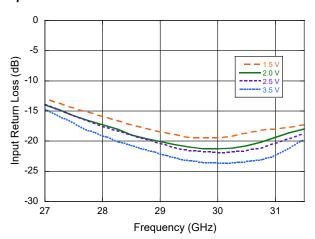

- 1. Remove RF_{IN} signal.
- 2. Decrease V_D to 0 V


Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, Z_0 = 50 Ω over Temperature

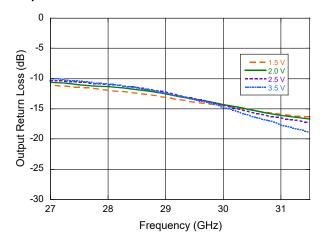
Gain 40 30 10 10 27 28 29 30 31

Frequency (GHz)

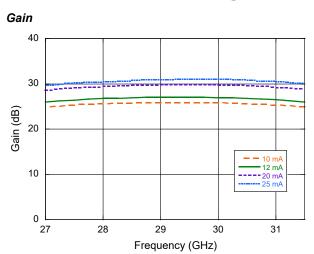

Output Return Loss

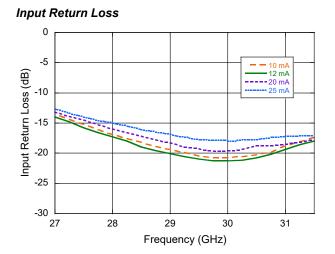


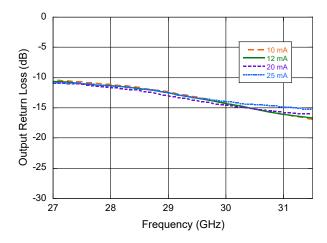
Typical Performance Curves @ I_D = 25 mA, Z_0 = 50 Ω over Voltage


Gain

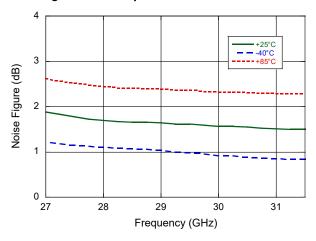
Input Return Loss

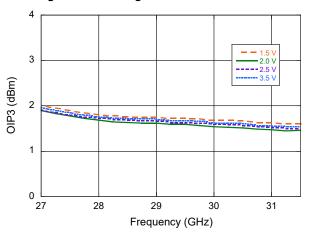



Output Return Loss

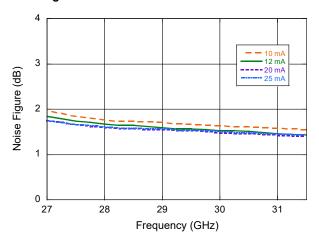


Typical Performance Curves @ $V_D = 2 V$, $Z_0 = 50 \Omega$ over Current

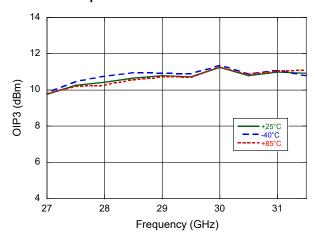

Output Return Loss

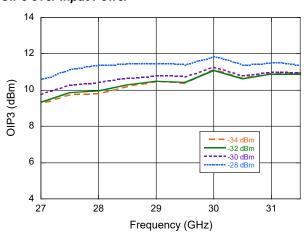


Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, 25°C, Z_0 = 50 Ω


Noise Figure over Temperature

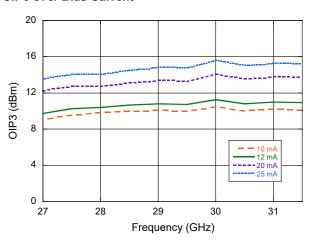
Noise Figure over Voltage

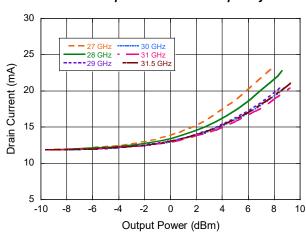

Noise Figure over Current

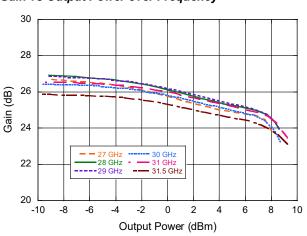


Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, P_{IN} = -30 dBm, 25°C, Z_0 = 50 Ω


OIP3 over Temperature


OIP3 over Input Power

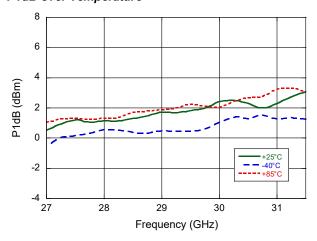

OIP3 over Bias Voltage


OIP3 over Bias Current

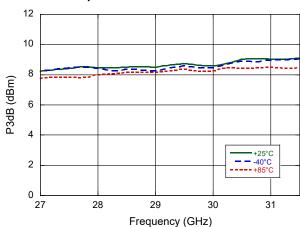
Bias Current vs Output Power over Frequency

Gain vs Output Power over Frequency

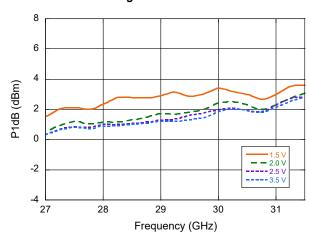
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

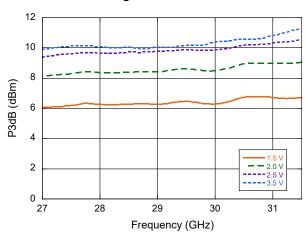

Visit www.macom.com for additional data sheets and product information.

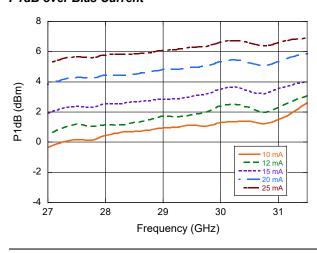
9

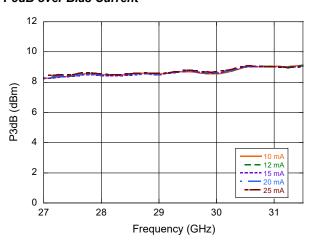


Typical Performance Curves @ V_D = 2 V, I_D = 25 mA, 25°C, Z_0 = 50 Ω


P1dB over Temperature

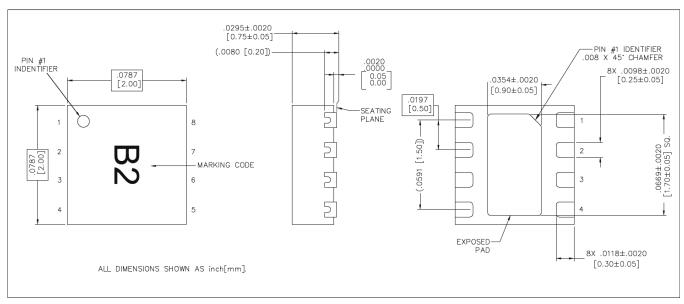

P3dB over Temperature


P1dB over Bias Voltage


P3dB over Bias Voltage

P1dB over Bias Current

P3dB over Bias Current


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

10

Lead-Free 2 mm TDFN 8-Lead SMT

Lead finish: NiPdAuAg plating Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.

Low Noise Amplifier 27.0 - 31.5 GHz

MAAL-011264

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.