

MAAL-011207-QR3000

Rev. V4

Features

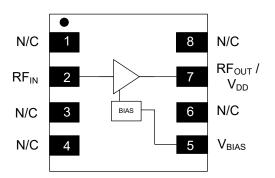
- AEC-Q100 Grade 2 Qualified (-40°C to +105°C)
- Low Noise Figure:
- 0.60 dB @ 0.15 GHz
 0.35 dB @ 1.9 GHz
 0.70 dB @ 2.6 GHz
- High Gain:

23.5 dB @ 0.15 GHz 23.0 dB @ 2.6 GHz 18.0 dB @ 6.0 GHz

- High Linearity: 33 dBm OIP3
- Single Voltage Bias: 3 5 V
- Integrated Active Bias Circuit
- Current Adjustable 30 80 mA
- Lead-Free 2 mm 8-LD PDFN Package
- RoHS* Compliant

Applications

This part is ideal for Automotive applications such as Compensators and Smart Antenna Systems, designed for V2X infrastructure technologies (either DSRC or C-V2X) based Telematics Control Units (TCUs).


Description

The MAAL-011207 is a high dynamic range, single stage MMIC LNA with ultra low noise figure, high gain and excellent linearity. This amplifier is designed for operation from 0.15 to 6 GHz and is housed in a lead-free 2 mm 8-lead PDFN plastic package.

This low noise amplifier has an integrated active bias circuit allowing direct connection to 3 V or 5 V bias and minimizing variations over temperature and process. The bias current is set by an external resistor, so the user can customize the power consumption to fit the application. V_{BIAS} can be utilized as an enable pin to power the device up and down during operation.

In the 50 Ω environment and at 3 V, the MAAL-011207 offers 0.7 dB noise figure at 2.6 GHz, with 23 dB of gain and over 33 dBm output third order intercept point (OIP3).

Functional Block Diagram

Pin Configuration¹

Pin#	Pin Name	Description
1, 3, 4, 6, 8	N/C	No Connection
2	RF _{IN}	RF Input
5	V_{BIAS}	Bias Voltage
7	RF _{OUT} / V _{DD}	RF Output / Drain Voltage
9	Pad ²	Ground

- MACOM recommends connecting unused package pins to ground
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information^{3,4}

Part Number	Package
MAAL-011207-QR3000	3000 Piece Reel
MAAL-011207-Q01SMB	5.9 GHz Sample Board
MAAL-011207-Q02SMB	0.76 GHz Sample Board

- 3. Reference Application Note M513 for reel size information.
- 4. All sample boards include 5 loose parts.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V4

Electrical Specifications: Freq = 1.9 GHz, V_{DD} = 3 V, +25°C, Z_0 = 50 Ω , V_{BIAS} = 2.3 V^5

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	-	dB	_	0.35	0.7
Gain	-	dB	21	23	25
Input Return Loss ⁶	-	dB	_	5	_
Output Return Loss ⁶	-	dB	_	5	_
Output IP3	P _{IN} = -22 dBm, tones 11 MHz apart	dBm	_	33	_
Output P1dB	-	dBm	_	17.5	_
Total Current	$I_{DQ} = I_{DD} + I_{BIAS}$	mA	39	50	68

^{5.} Refer to biasing options on page 3.

Absolute Maximum Ratings^{7,8,9}

Parameter	Absolute Maximum
RF Input Power CW	19 dBm
V _{DD}	6 V
V _{BIAS}	5 V
Storage Temperature	-55°C to +150°C
Operating Temperature	-40°C to +105°C
Junction Temperature ¹⁰	+150°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 9. Operating at nominal conditions with $T_J \le 150^{\circ}\text{C}$ will ensure MTTF > 1 x 10^6 hours.
- 10.Junction Temperature (T_J) = T_C + Θ_{JC} * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ_{JC}) = 83°C/W

a) For $T_C = +25^{\circ}C$,

 $T_J = 33^{\circ}C @ 3V, 0.05 A, P_{OUT} = 17.5 dBm, P_{IN} = -4.5 dBm$

b) For $T_C = +85^{\circ}C$,

 $T_J = 93^{\circ}C @ 3V, 0.05 A, P_{OUT} = 17.5 dBm, P_{IN} = -4.5 dBm$

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A HBM devices.

^{6.} Return Loss can be improved with external matching components. Refer to application section.

MAAL-011207-QR3000

Rev. V4

Biasing Options

The MAAL-011207 bias can be set in 2 different ways: using only V_{DD} or using separate V_{DD} and V_{BIAS} voltages. A separate V_{BIAS} voltage allows pin 5 (V_{BIAS}) to be used as an enable pin to power the device up and down during operation.

For both bias methods select the value of R_{BIAS} to achieve the desired current based on the tables on page 4, and use DC blocks at pin 2 (RF_{IN}) and pin 7 (RF_{OUT} / V_{DD}).

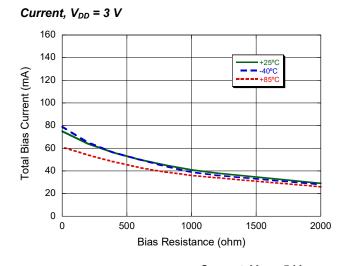
Biasing Option - V_{DD} only

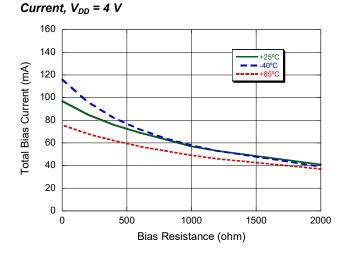
To use only V_{DD} , connect pin 7 (RF_{OUT} / V_{DD}) to V_{DD} through an RF choke inductor and connect pin 5 (V_{BIAS}) to V_{DD} through bias resistor R_{BIAS} as shown in Figure 1.

Figure 1

Biasing Option - Separate V_{DD} and V_{BIAS} Voltages (V_{BIAS} ≤ V_{DD})

To use separate V_{DD} and V_{BIAS} voltages, connect pin 7 (RF_{OUT} / V_{DD}) to V_{DD} through an RF choke inductor and connect pin 5 (V_{BIAS}) to V_{BIAS} through bias resistor R_{BIAS} as shown in Figure 2. Typical current (I_{BIAS}) draw for pin 5 (V_{BIAS}) is 1.4 mA @ V_{BIAS} = 3 V and 1 μ A @ V_{BIAS} = 0 V. Typical current (I_{DD}) draw for pin 7 (RF_{OUT} / V_{DD}) is < 1 μ A @ V_{BIAS} = 0 V.



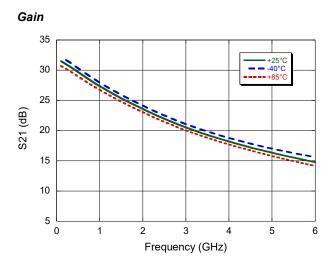

Figure 2

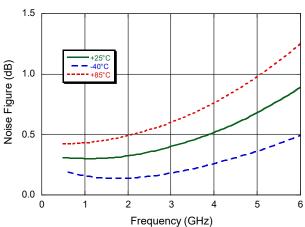
MAAL-011207-QR3000 Rev. V4

Typical Performance Curves of the Active Bias Circuit

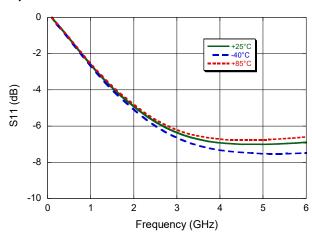
Current, $V_{DD} = 5 V$ 160 140 +25°C -40°C Total Bias Current (mA) 120 100 80 60 40 20 0 0 500 2000 1000 1500 Bias Resistance (ohm)

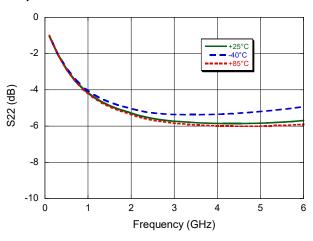
Bias Table

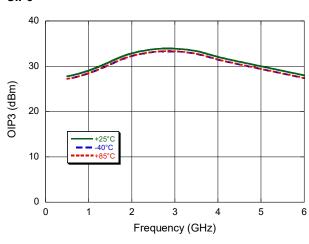

	Total Current (mA)								
Bias Resistance (Ω)	V _{DD} = 3 V			V _{DD} = 4 V			V _{DD} = 5 V		
(\$2)	+25°C	-40°C	+85°C	+25°C	-40°C	+85°C	+25°C	-40°C	+85°C
2000	29	28	26	41	39	37	52	52	45
1200	38	36	34	53	53	46	66	69	55
1000	41	39	36	57	58	49	71	75	59
800	45	44	39	63	64	53	77	83	62
600	50	50	43	69	72	57	83	93	67
400	56	56	48	76	82	62	91	106	72
200	64	65	54	85	96	68	100	123	78
0	75	79	61	97	116	76	110	141	84

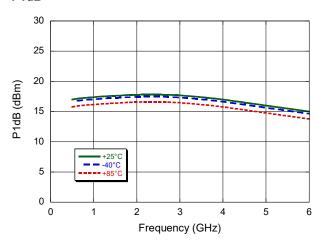

MAAL-011207-QR3000

Rev. V4


Typical Performance Curves @ 3 V / 50 mA, $Z_0 = 50 \Omega$

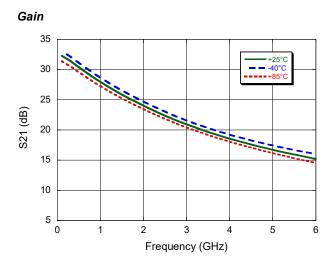

Noise Figure

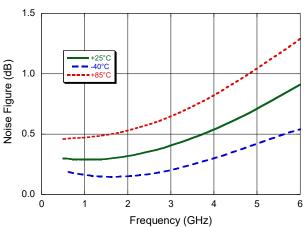

Input Return Loss


Output Return Loss

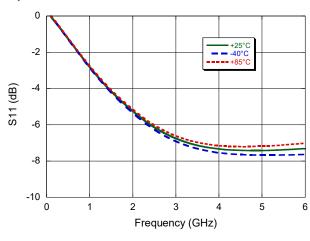
OIP3

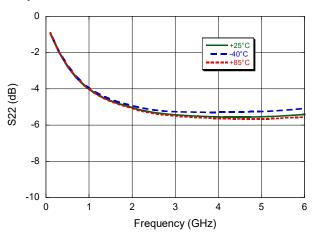
P1dB

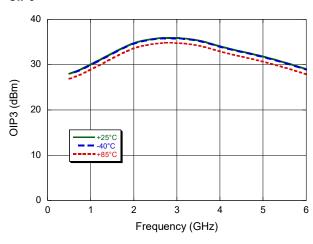


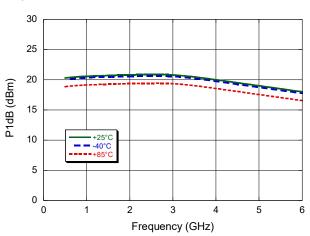

MAAL-011207-QR3000

Rev. V4


Typical Performance Curves @ 5 V / 70 mA, Z_0 = 50 Ω

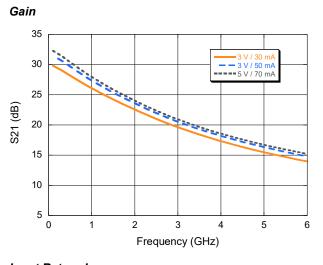

Noise Figure

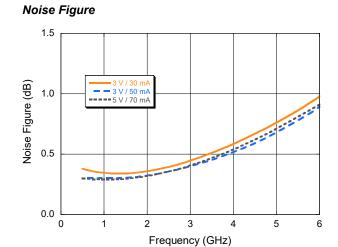

Input Return Loss


Output Return Loss

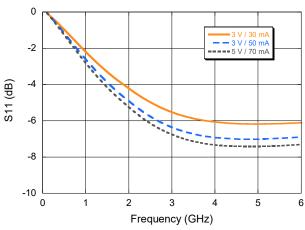
OIP3

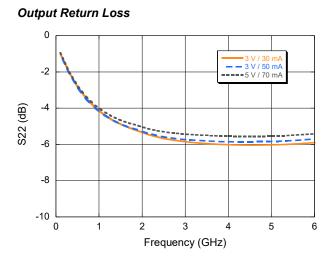
P1dB

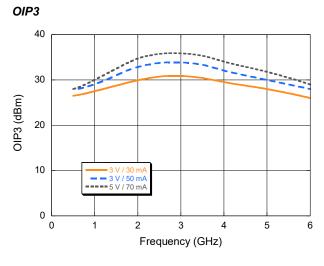

6

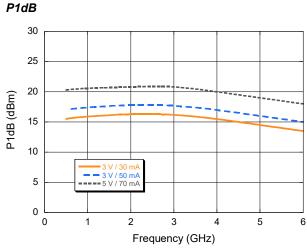


MAAL-011207-QR3000

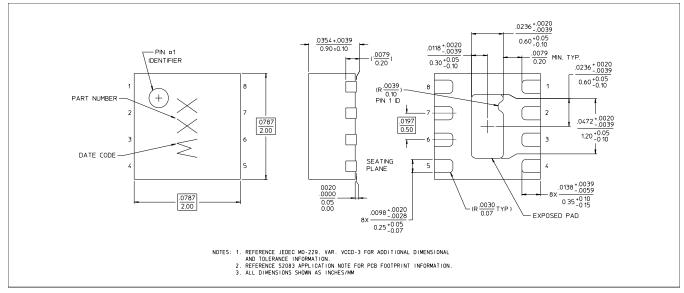

Rev. V4


Typical Performance Curves @ 3 V / 30 mA, 3 V / 50 mA, 5V / 70 mA, Z_0 = 50 Ω





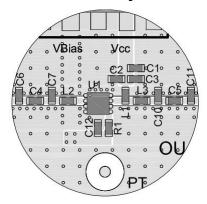
Input Return Loss

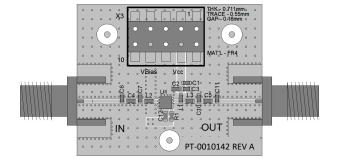


7

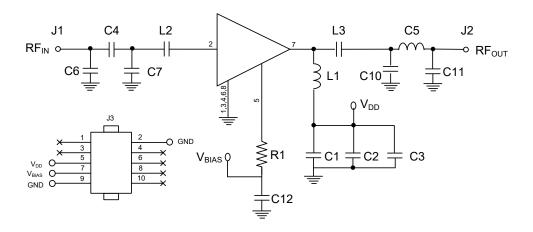
Lead-Free 2 mm 8-Lead PDFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.





Rev. V4


Application Section: 5.9 GHz

Recommended PCB Layout

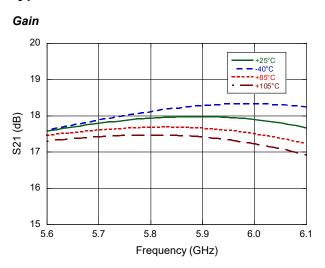
Schematic Including Off-Chip Components

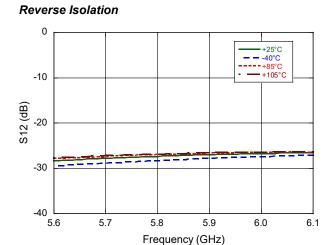
Application Section: 5.9 GHz

Parts List

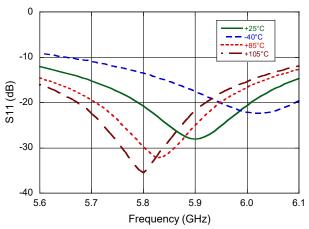
Component	Value	Size	Manufacturer
C1, C12	0.1 μF	0402	Murata GRM155R71C104K
C2, C3	47 pF	0402	Murata GRM1555C1H470JA01D
C4, C5	2.2 pF	0402	Murata GJM1555C1H2R2WB01D
C6, C11	DNF	0402	Do Not Fit
C7, C10	0.5 pF	0402	Murata GJM1555C1HR50WB01D
L1	2.7 nH	0402	TDK MLG1005S2N7BT000
L2	2.2 pF	0402	Murata GJM1555C1H2R2WB01D
L3	10 pF	0402	Murata GJM1555C1H100FB01D
R1	1 kΩ	0402	Rohm MCR01MZPF1001

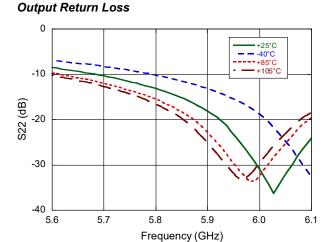
Electrical Specifications: Freq = 5.9 GHz, V_{DD} & V_{BIAS} = 3.3 V, +25°C, Z_0 = 50 Ω , R_{BIAS} = 1 k Ω

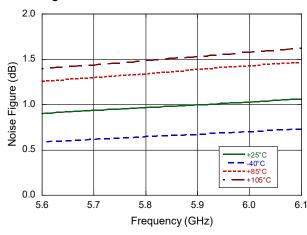

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	_	dB	_	1	_
Gain	_	dB	_	18	_
Input Return Loss	_	dB	_	25	_
Output Return Loss	_	dB	_	14	_
Output P1dB	_	dBm	_	15	_
Current	I _{DD} + I _{BIAS}	mA	_	45	_

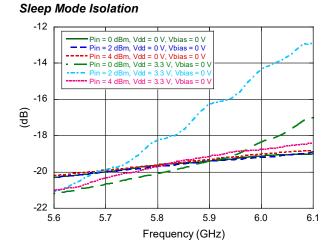


MAAL-011207-QR3000


Rev. V4


Typical Performance Curves for 5.9 GHz Application Section



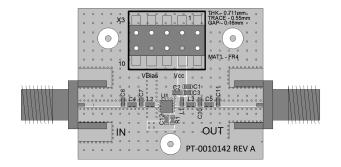

Input Return Loss

Noise Figure

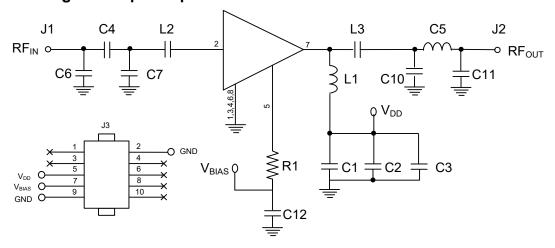
11

Rev. V4


Applications Section: 0.76 GHz


The MAAL-011207 is designed to work as a low noise gain block over a wide range of frequencies in a $50~\Omega$ environment.

Input and output can be tuned to improve performance over a specific frequency band.


An alternative FR4 evaluation board using all 0402 components is shown opposite. In this application the board has been tuned for optimal performance @ 0.76 GHz. The parts list on the following page details the components needed to tune the MAAL-011207 for operation for this application.

Recommended PCB Layout for 0.76 GHz

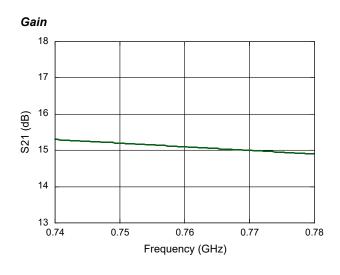
Schematic Including Off-Chip Components for 0.76 GHz

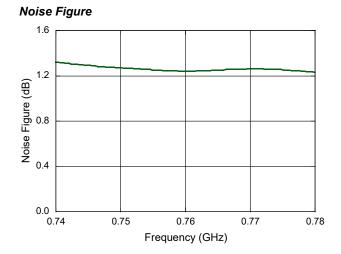
12

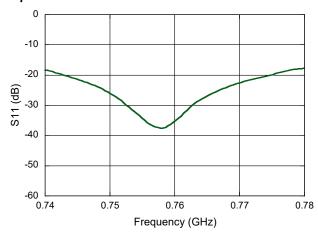
Applications Section: 0.76 GHz

Parts List: 0.76 GHz

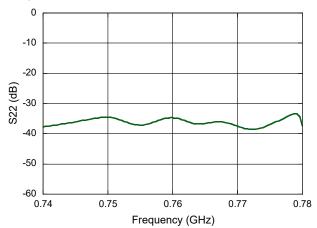
Component	Value	Size	Manufacturer / Part#
C1, C12	0.1 μF	0402	Murata / GRM155R71C104K
C2, C3	47 pF	0402	Murata / GRM1555C1H470JA01D
C4	12 nH	0402	TDK / MLG1005S12NJT000
C5	150 R	0402	Rohm / MCR01MRTF1500
C6	6.8 nH	0402	TDK / MLG1005S6N8JT000
C7	DNF	0402	Do Not Fit
C10, C11	68 R	0402	Rohm \ MCR01MRTF68R0
L1	56 nH	0402	TDK / MLG1005S56NJT000
L2, L3	120 pF	0402	Murata / GRM1555C1E121JA01D
R1	3.9 kΩ	0402	Rohm / MCR01MRTJ392


Electrical Specifications: Freq. = 0.76 GHz, V_{DD} & V_{BIAS} = 3.3 V, T_A = +25°C, R_{BIAS} = 3.9 k Ω


Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	-	dB		15.5	_
Input Return Loss	-	dB		30	
Output Return Loss	_	dB	_	30	
Noise Figure	_	dB	_	1.2	_
Input P1dB	_	dBm	_	-13	_
Current	I _{DD} + I _{BIAS}	mA	_	20	_
Voltage	V_{DD},V_{BIAS}	V	_	3.3	_



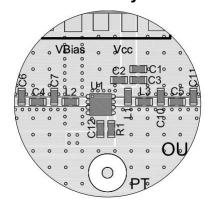
Typical Performance Curves: 0.76 GHz Application Section

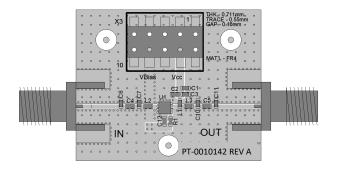


Input Return Loss

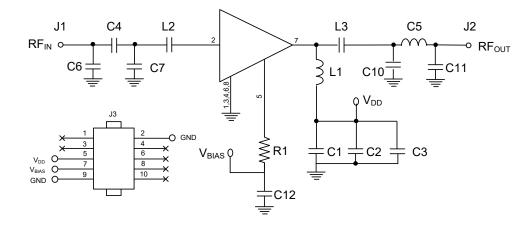
Output Return Loss

Rev. V4


Application Section: 2.3 - 2.7 GHz


The MAAL-011207 is designed to work as a low noise gain block over a wide range of frequencies in a $50~\Omega$ environment.

Input and output can be tuned to improve return loss over a specific frequency band.


The evaluation board shown has been designed for tuning flexibility. The parts list on page 10 details the components needed to tune the MAAL-011207 for operation from 2.3 - 2.7 GHz. R1 or R2 may be used as R_{BIAS} according to the biasing option chosen.

Recommended PCB Layout

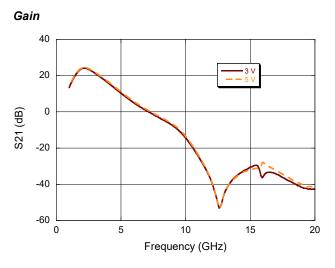
Schematic Including Off-Chip Components

15

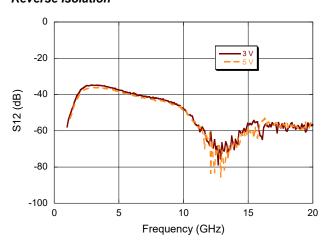
Application Section: 2.3 - 2.7 GHz

Parts List, 2.3 - 2.7 GHz

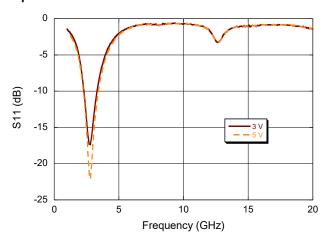
Component	Value	Size	Manufacturer	Manufacturer Part #
C1, C12	0.1 μF	0402	Murata	GRM155R71C104K
C2, C3	47 pF	0201	Murata	GRM1555C1H470JA01D
C4	10 pF	0201	Murata	GJM0336C1E100JB01
C5	0 Ω	0201	_	_
C6	_	0201	_	_
C7	0.7 pF	0201	Murata	GJM0335C1ER70WB0
C10	0.4 pF	0201	Murata	GJM0335C1ER40WB01
C11	_	0201	_	_
L1	2.7 nH	0201	Murata	LQP03TN2N7C02
L2	2.5 nH	0201	Coilcraft	0201DS-2N5XJL
L3	1.8 pF	0201	Murata	GJM0335C1E1R8BB01
R1	3.9 kΩ	0402	Rohm	MCR01MRTJ392

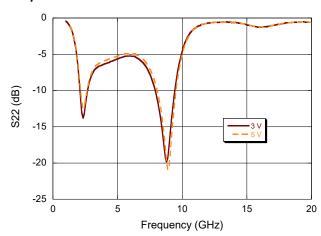

Rev. V4

Electrical Specifications: Freq = 2.6 GHz^{11,12}, V_{DD} = 3 V, +25°C, Z_0 = 50 Ω


Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	-	dB	_	0.7	_
Gain	-	dB	_	23	_
Input Return Loss	-	dB	_	16	_
Output Return Loss	-	dB	_	10	_
Output IP3	P _{IN} = -22 dBm, tones 11 MHz apart	dBm	_	33.4	_
Total Current	$I_{DQ} = I_{DD} + I_{BIAS}$	mA	_	50	_

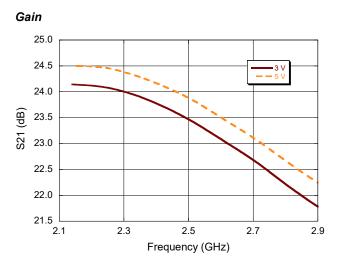
^{11.} Typical performance of the evaluation module with exact components shown on the 2.3 - 2.7 GHz parts list.

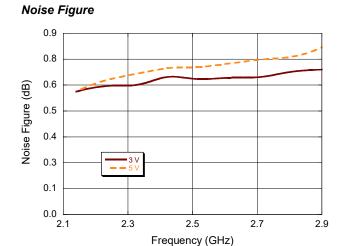

Typical Performance Curves: Broadband performance (2.3 - 2.7 GHz evaluation board)

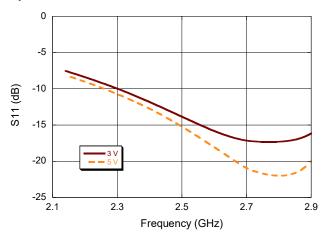

Reverse Isolation

Input Return Loss

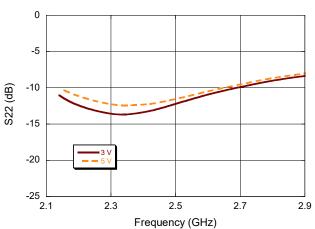
Output Return Loss


17

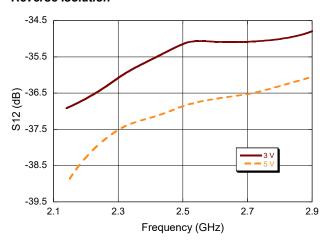

^{12.} Typical measured data includes evaluation board and connector losses.

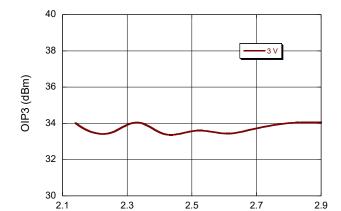

MAAL-011207-QR3000 Rev. V4

Typical Performance Curves: Freq = 2.3 - 2.7 GHz, Z_0 = 50 Ω



Input Return Loss




Output Return Loss

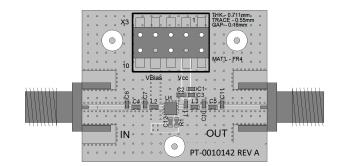
OIP3

Reverse Isolation

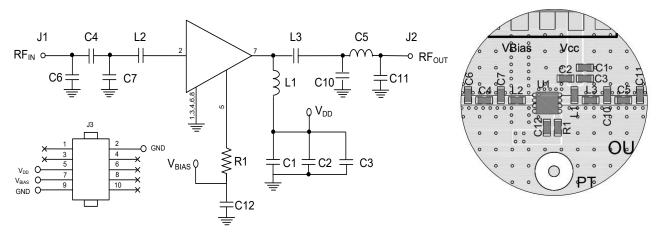
Frequency (GHz)

18

Rev. V4


Application Section: 3.6 - 4.2 GHz

The MAAL-011207 is designed to work as a low noise gain block over a wide range of frequencies in a $50~\Omega$ environment.


Input and output can be tuned to improve return loss over a specific frequency band.

The evaluation board shown has been designed for tuning flexibility. The parts list on page 14 details the components needed to tune the MAAL-011207 for operation from 3.6 - 4.2 GHz. R1 or R2 may be used as R_{BIAS} according to the biasing option chosen.

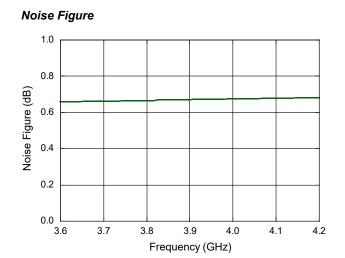
Evaluation Board, 3.6 - 4.2 GHz

Schematic, 3.6 - 4.2 GHz

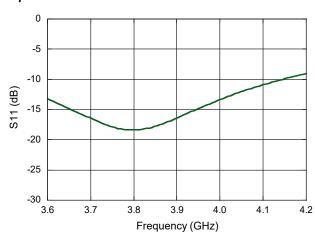
Parts List

Component	Value	Size	Component	Value	Size
C1, C12	0.1 μF	0402	C7, C10, C11	DNF	0402
C2, C3	47 pF	0402	L1	2.4 nH	0402
C4	0.75 pF	0402	L2	1.5 nH	0402
C5	10 pF	0402	L3	1.0 nH	0402
C6	0.3 pF	0402	R1	470 Ω	0402

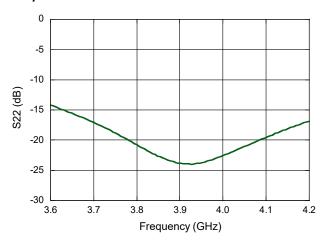
Rev. V4


Electrical Specifications: Freq = 3.6 - 4.2 GHz¹³, V_{DD} = 3 V, +25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	-	dB	_	0.7	
Gain	-	dB	_	19.5	_
Input Return Loss	-	dB	_	17	_
Output Return Loss	-	dB	_	15	_
Total Current	$I_{DQ} = I_{DD} + I_{BIAS}$	mA	_	56	_

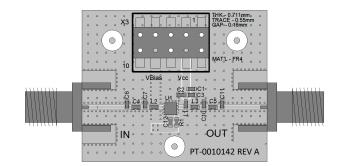

^{13.} Typical performance of the evaluation module with exact components shown on the 3.6 - 4.2 GHz parts list.

Typical Performance Curves: Broadband performance (3.6 - 4.2 GHz evaluation board)

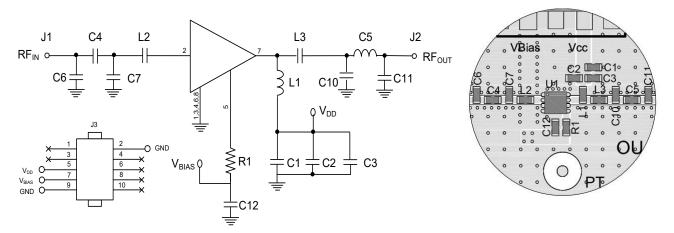

Gain 21 20 20 19 17 16 3.6 3.7 3.8 3.9 4.0 4.1 4.2 Frequency (GHz)

Input Return Loss

Output Return Loss


Application Section: 4.4 - 4.9 GHz

The MAAL-011207 is designed to work as a low noise gain block over a wide range of frequencies in a 50 Ω environment.


Input and output can be tuned to improve return loss over a specific frequency band.

The evaluation board shown has been designed for tuning flexibility. The parts list on page 14 details the components needed to tune the MAAL-011207 for operation from $4.4-4.9~\mathrm{GHz}$. R1 or R2 may be used as R_{BIAS} according to the biasing option chosen.

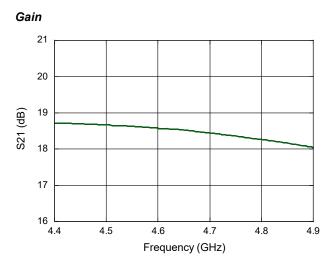
Evaluation Board, 4.4 - 4.9 GHz

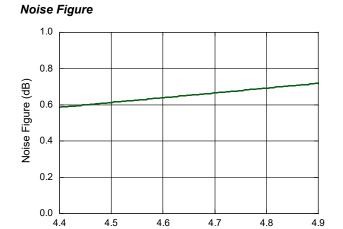
Schematic, 4.4 - 4.9 GHz

Parts List

Component	Value	Size	Component	Value	Size
C1,C12	0.1 μF	0402	C10	1.5 nH	0402
C2, C3	47 pF	0402	L1	1.0 nH	0402
C4	1.2 pF	0402	L2	0.6 nH	0402
C5	1.5 pF	0402	L3	1.0 pF	0402
C6, C11	DNF	_	R1	470 Ω	0402
C7	0.3 pF	0402			

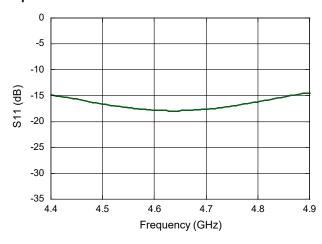
MAAL-011207-QR3000

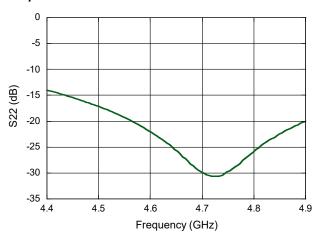

Rev. V4


Electrical Specifications: Freq = 4.4 - 4.9 GHz¹⁴, V_{DD} = 3 V, +25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	-	dB		0.65	
Gain	-	dB	_	18.5	_
Input Return Loss	-	dB	_	18	_
Output Return Loss	-	dB	_	15	_
Total Current	$I_{DQ} = I_{DD} + I_{BIAS}$	mA	_	56	_

^{14.} Typical performance of the evaluation module with exact components shown on the 4.4 - 4.9 GHz parts list.


Typical Performance Curves: Broadband performance (4.4 - 4.9 GHz evaluation board)

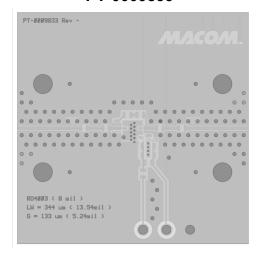


Frequency (GHz)

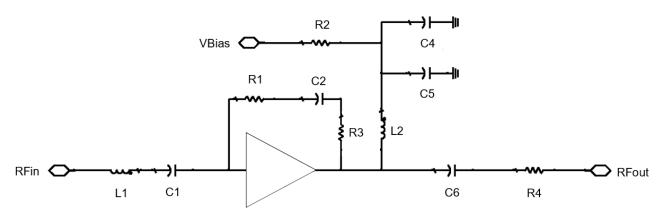
Input Return Loss

Output Return Loss

Rev. V4


Application Section: 0.15 - 2.2 GHz

The MAAL-011207 is designed to work as a low noise gain block over a wide range of frequencies in a 50 Ω environment.


Input and output can be tuned to improve return loss over a specific frequency band.

The evaluation board shown has been designed for tuning flexibility. The parts list on page 23 details the components needed to tune the MAAL-011207 for operation from 0.15 - 2.2 GHz. R2 may be used as R_{BIAS} according to the biasing option chosen.

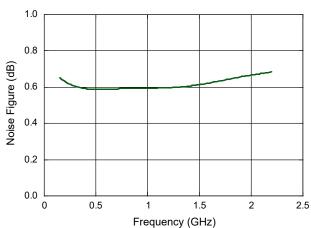
Evaluation Board, 0.15 - 2.2 GHz PT-0009833

Schematic, 0.15 - 2.2 GHz

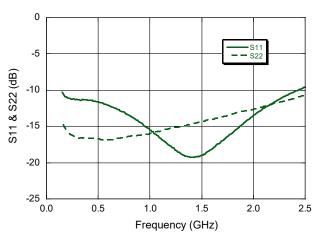
Parts List

Component	Value	Size	Component	Value	Size
L1	2.7 nH	0402	C4	0.1 μF	0402
C1	43 pF	0402	C5	100 pF	0402
R1	1.5 kΩ	0402	L2	120 nH	0402
C2	39 pF	0402	C6	50 pF	0402
R2	1.5 kΩ	0402	R4	0 Ω	0402
R3	0 Ω	0402	-	-	-

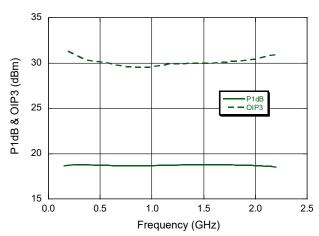
Rev. V4


Electrical Specifications: Freq = 0.15 - 2.2 GHz, V_{Bias} = 4 V, +25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Noise Figure	-	dB	_	0.6	_
Gain	-	dB	_	23.5	_
Input Return Loss	-	dB	_	14	
Output Return Loss	-	dB	_	15	_
Output P1dB	-	dBm	_	18.7	_
OIP3	-	dBm	_	30	_
Total Current	$I_{DQ} = I_{DD} + I_{BIAS}$	mA	_	50	_


Typical Performance Curves: Broadband performance (0.15 - 2.2 GHz evaluation board)

Gain 30 25 20 20 15 0.0 0.5 1.0 1.5 2.0 2.5 Frequency (GHz)


Noise Figure

Return Loss

P1dB & OIP3

Low Noise Amplifier 0.15 - 6 GHz

AEC-QIOO

MAAL-011207-QR3000

Rev. V4

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.