Low Phase Noise Amplifier 6 - 12 GHz

MAAL-011155-DIE Rev. V1

Features

• Phase Noise: 167 dBc/Hz @ 10 kHz

Gain: 15 dBP1dB: 20 dBm

Bias Voltage: V_{CC} = +5 V
 Bias Current: I_{CQ} = 90 mA
 50 Ω Matched Input and Output

Positive Voltage Only

Die Size: 2265 x 1695 x 100 um

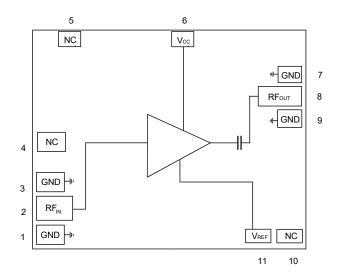
RoHS* Compliant

Applications

- Radar
- Electronic Countermeasures
- Test and Measurement
- Microwave Communication Systems

Description

The MAAL-011155-DIE is an easy to use low phase noise amplifier chip. It operates from 6 - 12 GHz and provides 167 dBc/Hz phase noise, 15 dB gain and 20 dBm P1dB. The input and output are fully matched to $50~\Omega$ with typical return loss >15 dB.


This product is fabricated using a GaAs HBT process which features full passivation for enhanced reliability.

The MAAL-011155-DIE is ideally suited for Radar, Test and Measurement, EW, ECM, and Microwave Communication Systems applications.

Ordering Information

Part Number	Package
MAAL-011155-DIE	Gel Pack

Functional Schematic

Pad Configuration¹

Pad #	Pad Name	Description
1,3,7,9	GND	DC + RF Ground to Backside Via
2	RF _{IN}	RF Input
4,5,10	NC	Not Connect
6	V _{CC}	Supply Voltage
8	RF _{OUT}	RF Output
11	V_{REF}	Reference Voltage

Backside of die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Electrical Specifications:

Freq. = 6 - 12 GHz, T_A = +25°C, V_{CC} = +5 V, Z_0 = 50 Ω (Based on probed die production data)

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = -15 dBm 6 GHz 8 GHz 12 GHz	dB	14.0 14.0 13.5	16.0 16.0 15.5	_
Gain Flatness	_	dB	_	±0.2	_
Gain Variation over Temperature	-	dB/°C	_	0.025	_
Output Power	P_{IN} = +5.0 dBm, 6 GHz P_{IN} = +4.7 dBm, 9 GHz P_{IN} = +3.0 dBm, 12 GHz	dBm	18.0 17.5 15.0	20.0 19.5 17.0	_
Noise Figure	<u> </u>	dB	_	5.1	_
Input Return Loss	-	dB	_	17	_
Output Return Loss	-	dB	_	16	_
P1dB	6 GHz	dBm	_	20	_
P3dB	6 GHz	dBm	_	21	_
OIP3	6 GHz, -10 dBm per tone	dBm	_	31.5	_
Phase Noise	6 GHz, P1dB 100 Hz 1 kHz 10 kHz 1 MKz	dBc/Hz	_	146 160 167 175	_
Icq	_	mA	_	90	_

Absolute Maximum Ratings^{2,3}

Parameter	Absolute Maximum
Input Power	14 dBm
V _{CC}	6 V
I _{cc}	105 mA
Junction Temperature ^{4,5}	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-40°C to +150°C

- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 4. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 20.7 °C/W.

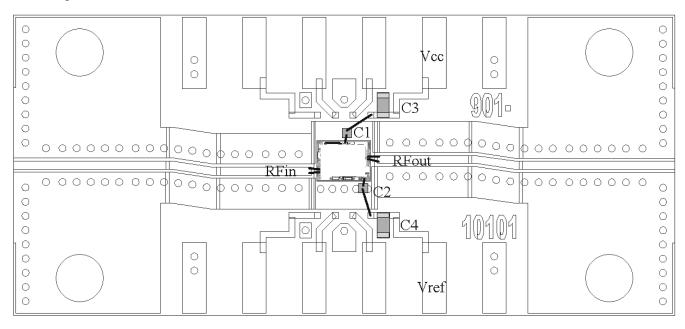
a) For $T_C = +25^{\circ}C$,

T_J = 38°C @ 6 V, 105 mA

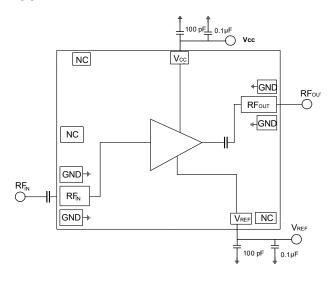
b) For $T_C = +85^{\circ}C$,

 $T_J = 98^{\circ}C @ 6 V, 105 mA$

Handling Procedures


Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A, 250 V HBM devices.

PCB Layout

Application Schematic

Operation

The technology is HBT; so, the turn-on and turn-off procedure is fairly simple.

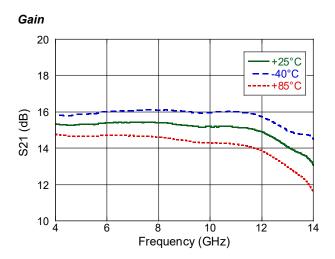
To turn-on:

- 1. Apply +5 V to Vcc
- 2. Starting at 0 V, adjust V_{REF} for target Icc

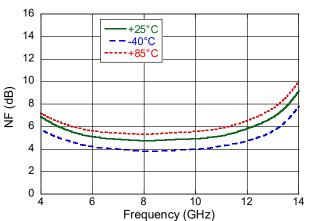
To turn-off:

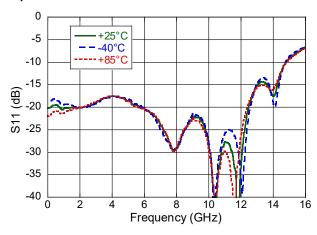
- 1. Set V_{REF} to 0 V
- 2. Set Vcc to 0 V

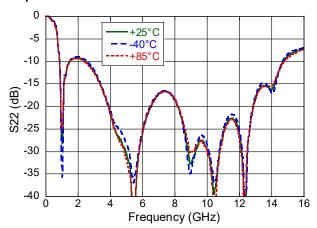
Parts List

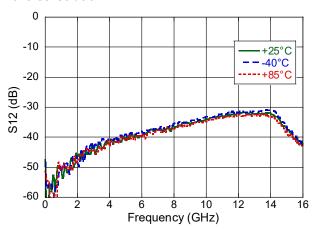

Part	Value	Case Style
C1, C2	100 pF	Single Layer
C3, C4	0.1 uF	0402

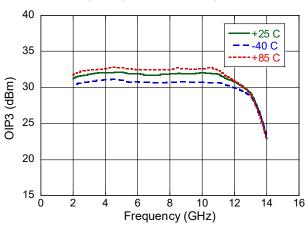
Evaluation PCB Specifications


Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Dielectric Layer: Rogers RO4003C 0.203 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Finished overall thickness: 0.237 mm


Typical Performance Curves: $V_{CC} = 5 V$, $I_{CC} = 90 mA$

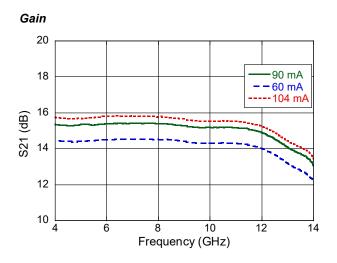

Noise Figure

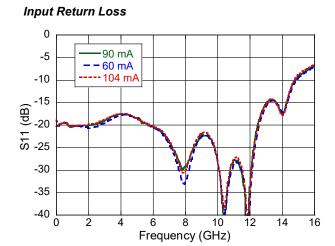

Input Return Loss


Output Return Loss

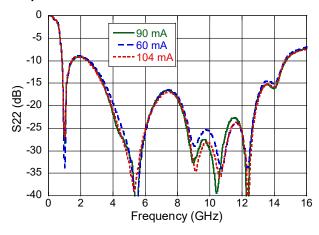
Reverse Isolation

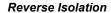
Output IP3 (10 MHz Tone Spacing, $P_{IN} = -10$ dBm per tone)

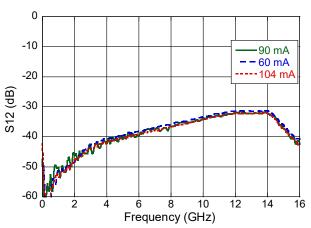

4

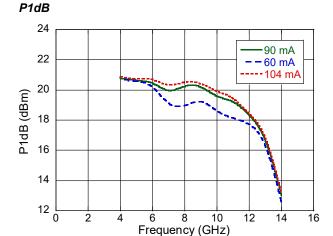

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

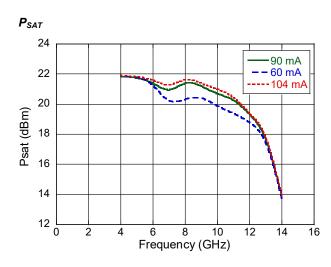
Visit www.macom.com for additional data sheets and product information.

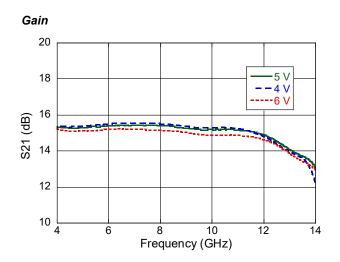


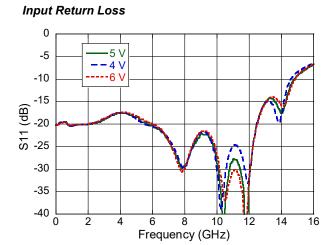

Typical Performance Curves: $V_{CC} = 5 V$, +25°C

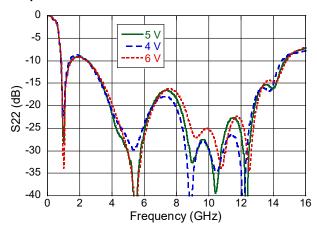


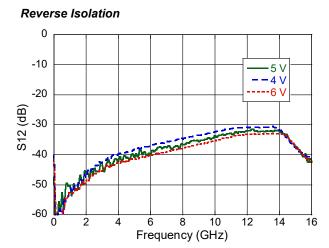


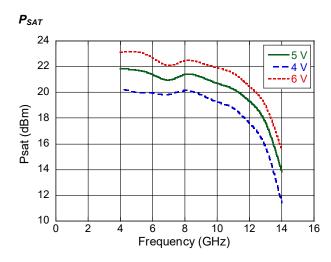

Output Return Loss



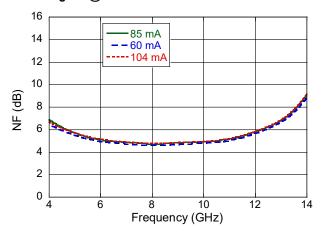


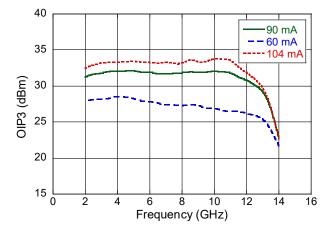



Typical Performance Curves: I_{CC} = 90 mA, +25°C



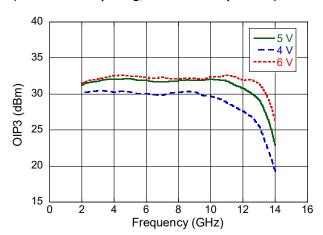
Output Return Loss


P1dB 24 22 -6 V 20 P1dB (dBm) 18 16 14 12 10 2 4 10 12 8 14 16 Frequency (GHz)

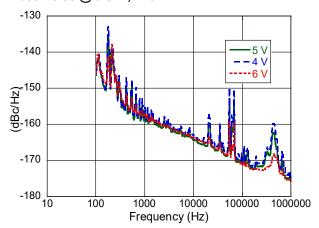


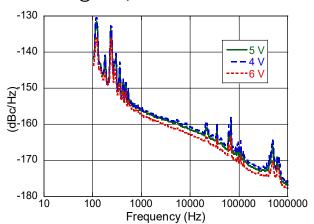
Typical Performance Curves: +25°C


Noise Figure @ 5 V

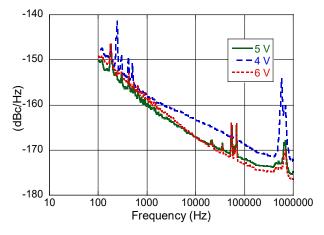

Output IP3 @ 5 V (10 MHz Tone Spacing, $P_{IN} = -10$ dBm per tone)

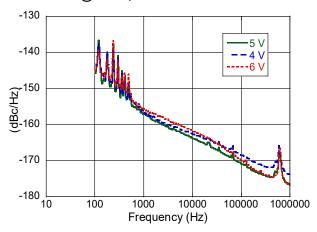
Noise Figure @ 90 mA

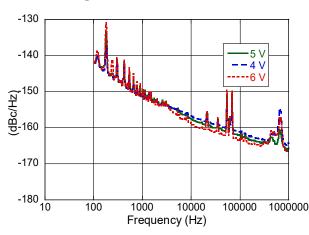

Output IP3 @ 90 mA (10 MHz Tone Spacing, $P_{IN} = -10$ dBm per tone)

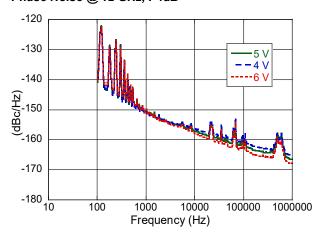


Typical Performance Curves: I_{CC} = 90 mA, +25°C

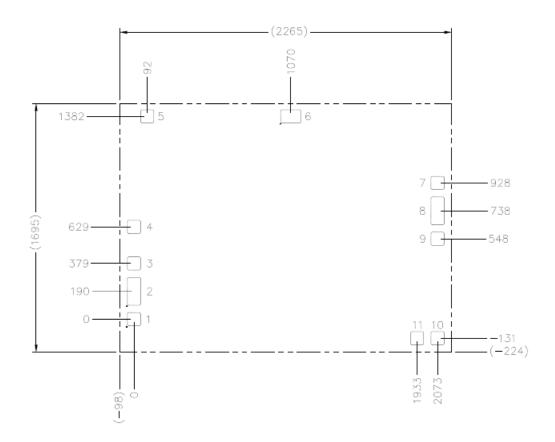

Phase Noise @ 6 GHz, P1dB


Phase Noise @ 6 GHz, P4dB


Phase Noise @ 9 GHz, P1dB


Phase Noise @ 9 GHz, P4dB

Phase Noise @ 12 GHz, P1dB



Phase Noise @ 12 GHz, P4dB

MMIC Die Outline

Bond Pad Detail^{6,7,8,9}

Pad #	x	Y
1,3,4,5,7,9,10,11	100	100
2,8	100	200
6	140	100

- 6. All dimensions shown as microns (μm) with a tolerance of +/-5 μm , unless otherwise noted.
- 7. Die thickness is 100 μ m +/- 10 μ m.
- 8. Bond pad and backside metallization: gold
- 9. Die size reflects cut dimensions. Saw or laser kerf reduces die size by \sim 25 μm each dimension.

Low Phase Noise Amplifier 6 - 12 GHz

MAAL-011155-DIE

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.