Ultra Low Phase Noise Amplifier 4 - 8 GHz

MAAL-011154

Rev. V2

Features

- Wideband Performance
- Phase Noise: -165 dBc/Hz @ 10 kHz Offset
- Noise Figure: 5 dB @ 5 GHz
- Bias Voltage: 5 V
- Bias Current: 85 mA
- 50 Ω Matched Input / Output
- Positive Voltage Only
- Lead-Free 4 mm 16-lead PQFN Package
- RoHS* Compliant

Applications

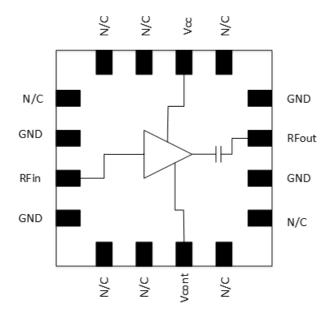
Test & Measurement, EW, ECM, and Radar

Description

The MAAL-011154 is an easy to use, wideband ultra low phase noise distributed amplifier in a lead-free 4 mm 16-lead PQFN package. It operates from 4 to 8 GHz and provides -165 dBc/Hz phase noise, 15.4 dB of linear gain, 19 dBm of P1dB, and 5 dB of noise figure. The input and output are fully matched to 50 Ω with typical return loss of 15 dB.

The RF output port is DC blocked. Amplifier control is available through the use of a control circuit.

This product is fabricated using a low phase noise HBT process which features full passivation for enhanced reliability.


The MAAL-011154 can be used as a low noise amplifier stage for signal generation applications. This device is ideally suited for applications where ultra low phase noise and drive power is required.

Ordering Information^{1,2}

Part Number Package	
MAAL-011154-TR0100	100 piece reel
MAAL-011154-SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 3 loose parts.

Functional Schematic

Pin Configuration

•				
Pin #	Pin Name	Description		
1,5,6,8,9,13,15,16	N/C ³	No Connection		
2,4,10,12	GND	Ground		
3	RF _{IN}	RF Input		
7	V _{CONT}	Control Voltage		
11	RF _{OUT}	RF Output		
14	V _{CC}	Collector Voltage		
Paddle ⁴	GND	Ground		

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

Electrical Specifications: Freq. = 4 - 8 GHz, T_A = +25°C, V_{CC} = +5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = -15 dBm	dB	12.5	15.7	_
Gain Flatness	_	dB	_	±0.2	_
Gain Variation over Temperature	_	dB/°C	_	0.009	_
Output Power	$P_{IN} = 5.4 \text{ dBm}, 4 \text{ GHz}$ $P_{IN} = 5.4 \text{ dBm}, 6 \text{ GHz}$ $P_{IN} = 3.0 \text{ dBm}, 8 \text{ GHz}$	dBm	17.5 17.5 15.0	20.5 20.5 18.0	_
Noise Figure	_	dB	_	5	_
Input Return Loss	_	dB	_	15	_
Output Return Loss	_	dB	_	15	_
P1dB	_	dBm	_	19	_
P3dB	_	dBm	_	22	_
OIP3	_	dBm	_	30	_
Phase Noise @ 100 Hz	4 GHz, P1dB, 100 Hz 1 KHz 10 KHz 1 MHz	dBc/Hz	_	148 160 165 175	_
Icq	_	mA	_	85	_

Maximum Operating Conditions

Parameter	Maximum
P _{IN}	12 dBm
V _{CC}	6 V
Icq	105 mA
Junction Temperature ^{5,6}	+130°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-40°C to +150°C

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

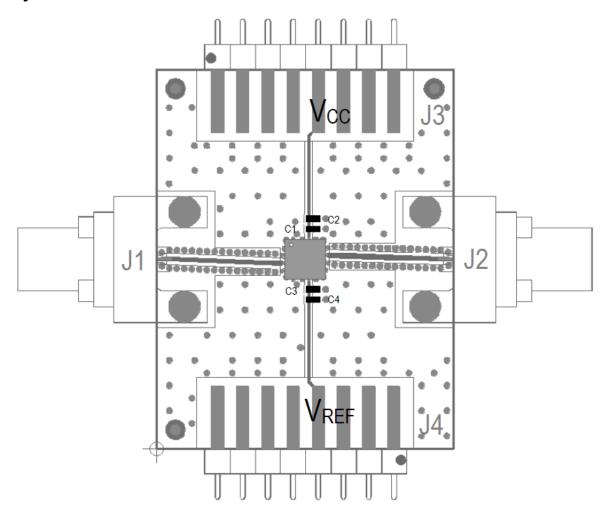
Absolute Maximum Ratings^{7,8}

Parameter	Absolute Maximum		
P _{IN}	20 dBm		
V _{CC}	6.5 V		
Icq	170 mA		
Junction Temperature ^{5,6}	+150°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-40°C to +150°C		

- 5. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 6. Junction Temperature (T_J) = T_C + Θ jc * (V * I) Typical thermal resistance (Θ jc) = 24.0°C/W.
 - a) For $T_C = +25^{\circ}C$,

T_J = 40.1°C @ 6 V, 105 mA

b) For $T_C = +85^{\circ}C$,


T_J = 100.1°C @ 6 V, 105 mA

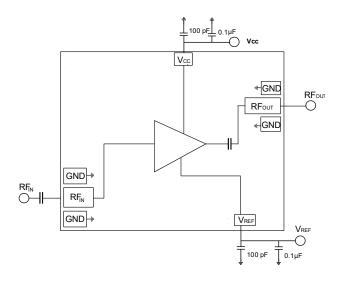
- 7. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.

Rev. V2

PCB Layout

Parts List

Part	Value	Case Style
C1,C3	100 pF	0402
C2,C4	0.1 μF	0402


Evaluation PCB Specifications

Top Layer: 1 oz Copper Cladding, 0.034 mm thickness Dielectric Layer: Rogers RO4350B 0.245 mm thickness Bottom Layer: 1 oz Copper Cladding, 0.034 mm thickness Finished overall thickness: 0.313 mm

Rev. V2

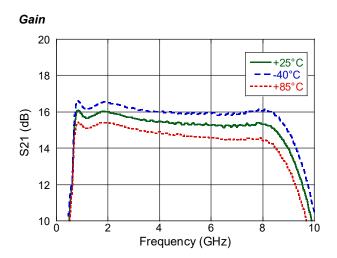
Application Schematic

Operation

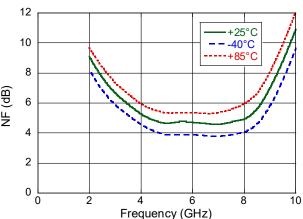
The technology is HBT; so, the turn-on and turn-off procedure is fairly simple.

To turn-on simply:

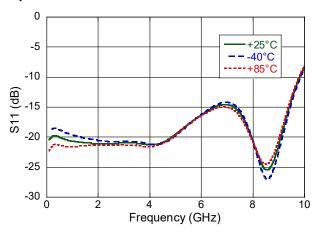
- 1. Apply +5 V to V_{CC}
- 2. Starting at 0 V, adjust V_{REF} for target I_{CC}

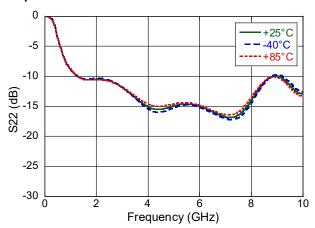

To turn-off:

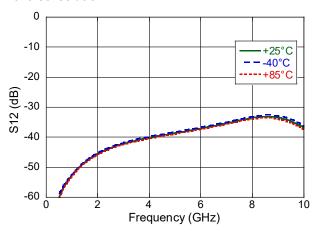
- 1. Set V_{REF} to 0 V
- 2. Set V_{CC} to 0 V

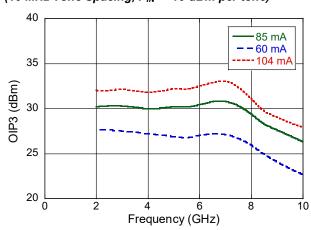


Rev. V2

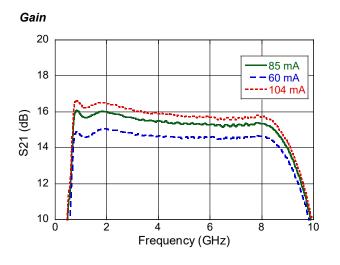

Typical Performance Curves: $V_{CC} = 5 V$, $I_{CC} = 85 mA$

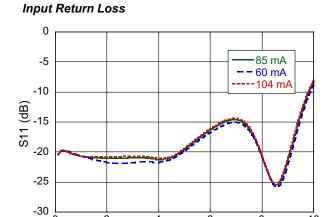

Noise Figure


Input Return Loss


Output Return Loss

Reverse Isolation

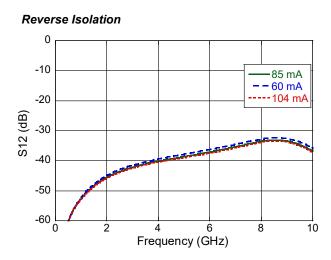

Output IP3 (10 MHz Tone Spacing, $P_{IN} = -10$ dBm per tone)

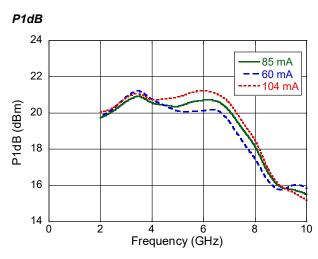


MAAL-011154 Rev. V2

Typical Performance Curves: V_{CC} = 5 V, 25°C

6

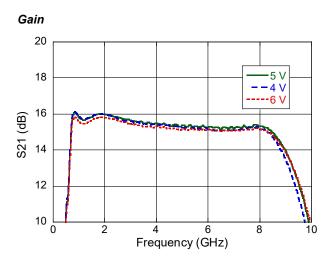

Frequency (GHz)

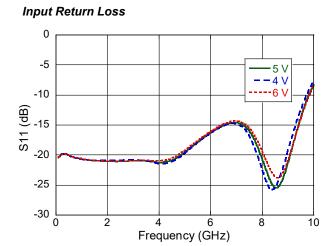

8

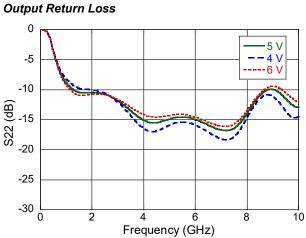
10

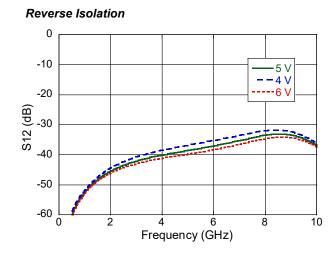
2

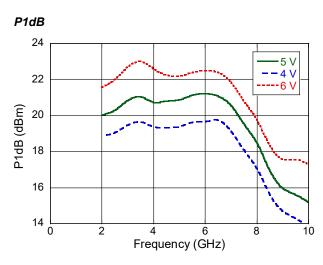
Output Return Loss 0 -5 -10 -10 -25 -20 -25 -30 0 2 4 6 8 10 Frequency (GHz)

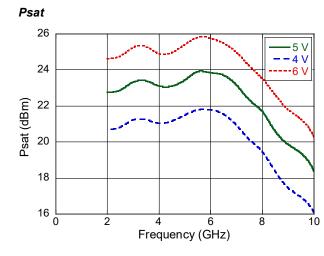


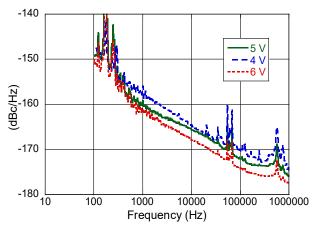


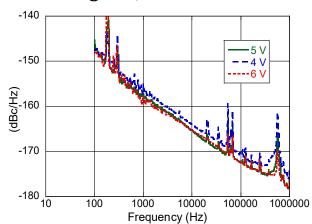



MAAL-011154 Rev. V2

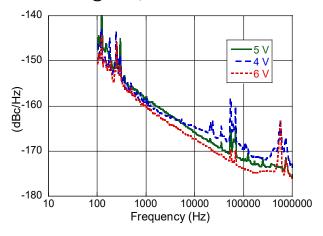

Typical Performance Curves: I_{CC} = 85 mA, 25°C

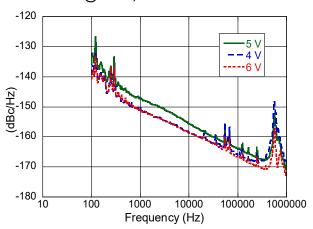


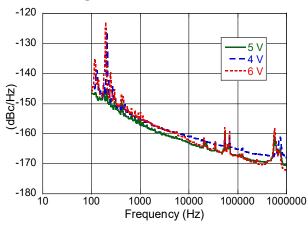


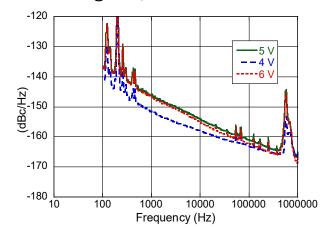

Rev. V2

Typical Performance Curves: I_{CC} = 85 mA, 25°C


Phase Noise @ 4 GHz, P1dB

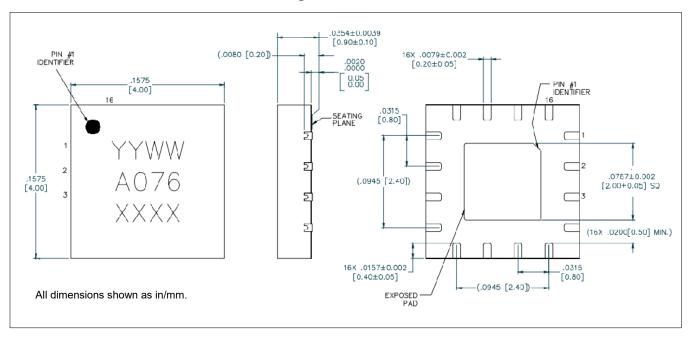

Phase Noise @ 4 GHz, P4dB


Phase Noise @ 6 GHz, P1dB


Phase Noise @ 6 GHz, P4dB

Phase Noise @ 8 GHz, P1dB

Phase Noise @ 8 GHz, P4dB


Ultra Low Phase Noise Amplifier 4 - 8 GHz

MAAL-011154

Rev. V2

Lead-Free 4 mm 16-Lead PQFN Package

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg.

Ultra Low Phase Noise Amplifier 4 - 8 GHz

MAAL-011154

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.