

Rev. V2

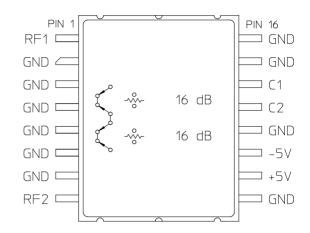
Features

- Attenuation: Two 16 dB bits
- Minimal Phase Variation over Attenuation Range
- Low DC Power Consumption
- Hermetic Surface Mount Package
- Integral TTL Driver
- 50 Ohm Nominal Impedance
- 260°C Reflow Compatible
- RoHS* Compliant

Description

MACOM's MAAD-009260-000100 is a GaAs FET 2-bit digital attenuator with two 16 dB steps and 32 dB total attenuation. The design has been optimized to minimize phase variation over the attenuation range. This attenuator and integral TTL driver is in a hermetically sealed ceramic 16-lead surface mount package.

The MAAD-009260-000100 is ideally suited for use where accuracy, fast switching, very low power consumption and low intermodulation products are required.


Typical applications include dynamic range setting in precision receiver circuits and other gain/leveling control circuits. Environmental screening is available. Contact the factory for information.

Ordering Information

Part Number	Package
MAAD-009260-000100	Bulk Packaging
MAAD-009260-0001TB	Sample Test Board

Note: Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ¹

Pin No.	Function	Pin No.	Function
1	RF1	9	GND
2	GND	10	+5V
3	GND	11	-5V
4	GND	12	GND
5	GND	13	C2
6	GND	14	C1
7	GND	15	GND
8	RF2	16	GND

 The metal bottom of the case must be connected to RF and DC ground.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

MAAD-009260

Constant Phase Digital Attenuator 32 dB, 2-Bit, TTL Driver, DC - 3.0 GHz

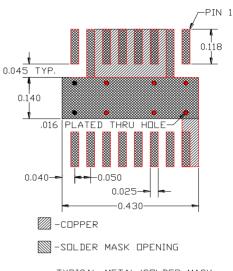
Rev. V2

Electrical Specifications: $T_A = 25$ °C, $Z_0 = 50 \Omega$, $V_{CC} = +5 V$, $V_{EE} = -5 V$

Parameter	Test Conditions	Frequency	Units	Min	Тур	Max
Operating Power ²	_	_	dBm	_	_	+20
Reference Insertion Loss	_	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz	dB dB dB			1.9 2.1 2.7
Attenuation Accuracy	16 dB Bit (C1 Control) 16 dB Bit (C1 Control) 16 dB Bit (C1 Control) 32 dB Attenuation 32 dB Attenuation 32 dB Attenuation	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 3.0 GHz	dB dB dB dB dB	15.5 15.4 15.4 30.8 30.8 30.8	- - - -	16.7 16.8 16.8 33.5 34.2 35.0
Phase Accuracy Relative to Reference Loss State	16 dB Bit (C1 Control) 16 dB Bit (C1 Control) 32 dB Attenuation	DC - 2.0 GHz 2.0 - 3.0 GHz DC - 3.0 GHz	deg deg deg	-3 -4 -7	_ _ _	+3 +4 +7
VSWR	Reference Loss, 16 dB Bit (C1 Control), or 32 dB Attenuation	DC - 2.0 GHz 2.0 - 3.0 GHz	Ratio Ratio	_	_	1.6:1 2.2:1
Switching Speed Ton Toff Trise Tfall	1.3 V Cntl to 90% RF 1.3 V Cntl to 10% RF 10% RF to 90% RF 90% RF to 10% RF	_ _ _	ns ns ns	_ _ _ _	42 30 19 16	_ _ _ _
1 dB Compression ³	Reference State Reference State	0.05 GHz 0.5 - 3.0 GHz	dBm dBm	_	>+26 >+26	
Input IP3	For two-tone Input Power up to +5 dBm	0.05 GHz 0.5 - 3.0 GHz	dBm dBm	_	+42 +42	_
Input IP2	For two-tone Input Power up to +5 dBm	0.05 GHz 0.5 - 3.0 GHz	dBm dBm	_	+55 +77	_
Vcc Vee			V V	4.5 -8.0	5.0 -5.0	5.5 -4.5
V _{IL} V _{IH}	LOW-level input voltage HIGH-level input voltage		V V	0.0 2.0	0.0 5.0	0.8 5.0
lin (Input Leakage Current)	Vin = V _{CC} or GND	_	uA	-1	_	1
Icc (Quiescent Supply Current)	Vcntrl = V _{CC} or GND	_	uA	_	250	400
Δlcc (Additional Supply Current Per TTL Input Pin)	V _{CC} = Max Vcntrl = V _{CC} - 2.1 V	_	mA	_	_	1.5
lee	VEE min to max Vin = V _{IL} or V _{IH}	_	mA	-1.0	-0.2	_
Thermal Resistance θjc	_	_	°C/W	_	50	_

^{2.} Maximum input power is specified with power applied to RF1. Note that C1 is the control for the 16 dB bit.

^{3. 1} dB Compression was measured up to +26 dBm, which is the absolute maximum rating for this device.


Rev. V2

Absolute Maximum Ratings 4,5

Parameter	Absolute Maximum			
Max Input Power ⁶ DC - 3.0 GHz	+26 dBm			
V _{CC}	-0.5V ≤ V _{CC} ≤ +7.0V			
V _{EE}	-8.5V ≤ V _{EE} ≤ +0.5V			
V _{CC} - V _{EE}	-0.5V ≤ V _{CC} - V _{EE} ≤ 14.5V			
Vin ⁷	-0.5V ≤ Vin ≤ V _{CC} + 0.5V			
Operating Temperature	-55°C to +125°C			
Storage Temperature	-65°C to +150°C			

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 6. Maximum input power is specified with power applied to RF1.
- Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.

Recommended PCB Configuration

TYPICAL METAL/SOLDER MASK LAYOUT FOR CR-12 PACKAGE

Handling Procedures

Please observe the following precautions to avoid damage:

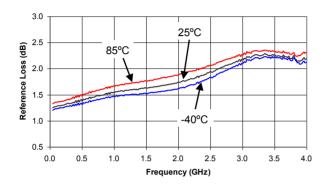
Static Sensitivity

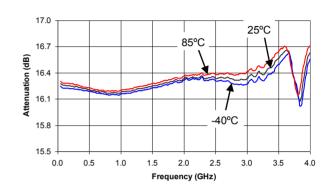
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Truth Table (Digital Attenuator) 8

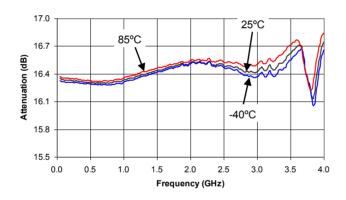
C2	C1	Attenuation
0	0	Loss, Reference
0	1	16.0 dB
1	1	32.0 dB

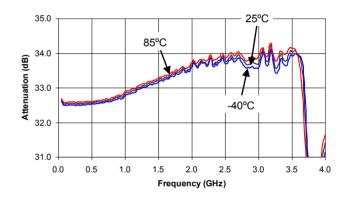
0 = TTL Low; 1 = TTL High

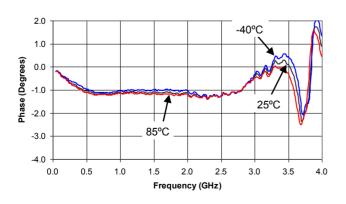

 C1 is specified as the control for the 16 dB bit. We show data for the performance with the C2 control - note that the power handling is reduced if C2 is used for the 16 dB bit. The electrical performance of the 16 dB bit controlled by C2 is not specified.

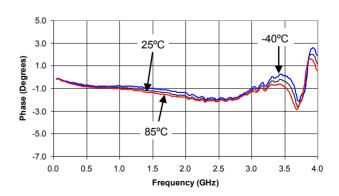

Rev. V2

Typical Performance Curves


Reference Loss vs. Frequency

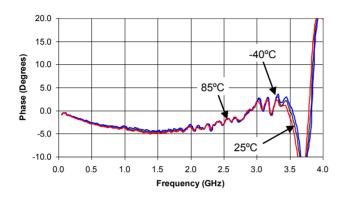

Attenuation - 16 dB Bit (C1) vs. Frequency

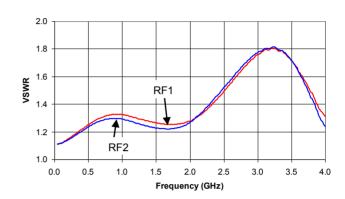

Attenuation - 16 dB Bit (C2) vs. Frequency


Attenuation - 32 dB Attenuation vs. Frequency

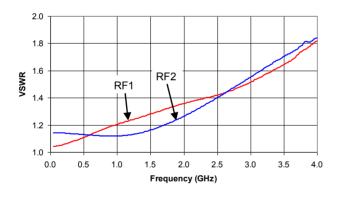
Phase - 16 dB Bit (C1) vs. Frequency Relative to Reference Loss State

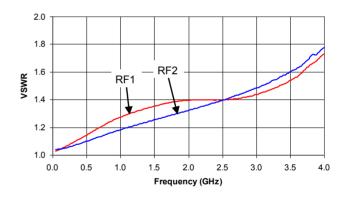
Phase - 16 dB Bit (C2) vs. Frequency Relative to Reference Loss State

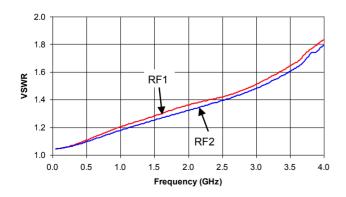



Rev. V2

Typical Performance Curves

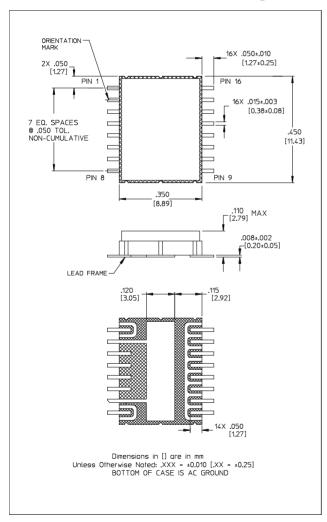

Phase - 32 dB Attenuation vs. Frequency Relative to Reference Loss State


VSWR vs. Frequency Reference Loss State


VSWR - 16 dB Bit (C1) vs. Frequency

VSWR - 16 dB Bit (C2) vs. Frequency

VSWR - 32 dB Attenuation vs. Frequency


Rev. V2

Typical Input IP2 and IP3 at Room Temperature 9

	IP2			IP3			
Attenuation	50 MHz	500 MHz	2 GHz	50 MHz	500 MHz	2 GHz	Units
Reference State	55	77	75	42	42	43	dBm
16 dB (C1)	62	78	87	41	41	44	dBm
16 dB (C2)	57	78	77	41	41	44	dBm
32 dB	65	80	90	43	43	53	dBm

^{9.} IP2 and IP3 are measured with two-tone inputs F1 and F2 up to +5 dBm with 1 MHz spacing.

Lead-Free, CR-12 Ceramic Package[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations.

MAAD-009260

Constant Phase Digital Attenuator 32 dB, 2-Bit, TTL Driver, DC - 3.0 GHz

Rev. V2

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.