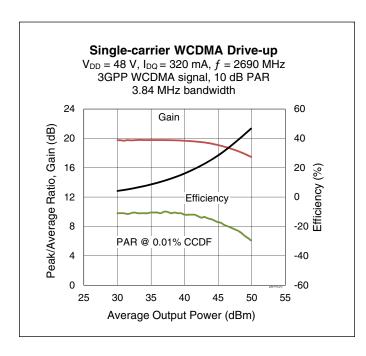


GTVA262711FA


Thermally-Enhanced High Power RF GaN on SiC Amplifier, 300 W, 48 V, 2620 – 2690 MHz

Description

The GTVA262711FA is a 300-watt (P_{3dB}) GaN on SiC HEMT D-mode amplifier for use in multi-standard cellular power amplifier applications. It features input matching, high efficiency, and a thermally-enhanced package with earless flange.

Package Types: H-87265J-2

Features

- GaN on SiC HEMT technology
- Input matched
- Typical pulsed CW performance: 10 μs pulse width, 10% duty cycle, 2690 MHz, 48 V
 - Output power at P_{3dB} = 300 W
 - Efficiency = 62%
 - Gain = 19.1 dB
- Human Body Model Class 1B (per ANSI/ESDA/ JEDEC JS-001)
- Capable of handling 10:1 VSWR @48 V, 70 W (CW) output power
- Pb-free and RoHS-compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in the production test fixture)

 $V_{\rm DD}$ = 48 V, $I_{\rm DQ}$ = 320 mA, $P_{\rm OUT}$ = 70 W avg, f = 2690 MHz. 3GPP WDMA signal, 3.84 MHz channel bandwidth, peak/average = 10 dB @ 0.01% CCDF

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Gain	G _{ps}	16	18	_	dB
Drain Efficiency	η_{D}	38	38.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-27.5	-25	dBc
Output PAR @ 0.01% CCDF	OPAR	5.7	6.3	_	dB

Note:

All published data at T_{CASE} = 25°C unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source Breakdown Voltage	V _{BR(DSS)}	150	_	_	V	$V_{GS} = -8 \text{ V}, I_{D} = 32 \text{ mA}$
Drain-source Leakage Current	I _{DSS}	_	_	4.5	mA	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 32 \text{ mA}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating Voltage	V _{DD}	0	_	50	N/	
Gate Quiescent Voltage	V _{GS(Q)}	_	-3.0	_	V	$V_{DS} = 50 \text{ V}, I_{D} = 320 \text{ mA}$

 $\textit{Gate Quiescent Voltage's (V}_{\textit{GS(Q)}}) \ \textit{range can be estimated by adding +0.1 V to the Gate Threshold Voltage (V}_{\textit{GS(th)}}) \ \textit{range.}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	125	V
Gate-source Voltage	V _{GS}	-10 to +2	V
Gate Current	I _G	32	mA
Drain Current	I _D	12	A
Junction Temperature	T _J	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

Characteristic	Symbol	Value	Unit	Conditions
Thermal Resistance	$R_{\theta JC}$	1.0	°C/W	T _{CASE} = 70 °C, 70 W (CW), V _{DD} = 48 V, I _{DQ} = 320 mA, 2690 MHz

Ordering Information

Type and Version	Order Code	Package	Shipping
GTVA262711FA V2 R0	GTVA262711FA-V2-R0	H-87265J-2	Tape & Reel, 50 pcs
GTVA262711FA V2 R2	GTVA262711FA-V2-R2	H-87265J-2	Tape & Reel, 250 pcs

Typical Performance (data taken in the production test fixture)

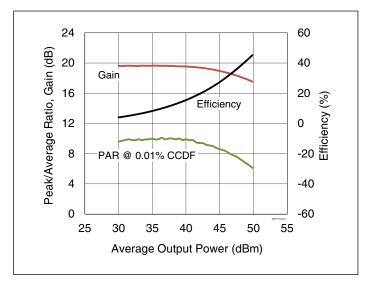


Figure 1. Single-carrier WCDMA Drive-up

 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}, f = 2655 \text{ MHz},$ 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bankdwidth

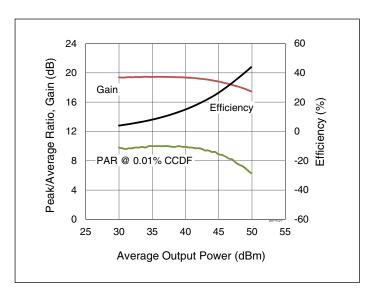


Figure 2. Single-carrier WCDMA Drive-up

 $V_{\rm DD} = 48~{
m V},~{
m I}_{
m DQ} = 320~{
m mA},~f = 2620~{
m MHz},$ 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

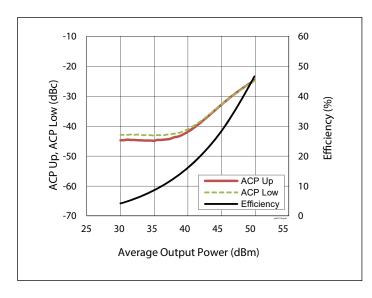


Figure 3. Single-carrier WCDMA Drive-up

 $V_{DD}=48\,V$, I $_{DQ}=320\,m$ A, $f=2690\,M$ Hz 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

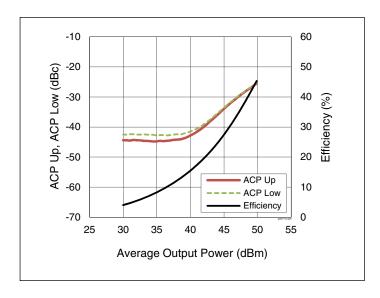


Figure 4. Single-carrier WCDMA Drive-up

 $V_{\rm DD} = 48~{
m V},~{
m I}_{
m DQ} = 320~{
m mA},~f = 2655~{
m MHz},$ 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

Typical Performance (cont.)

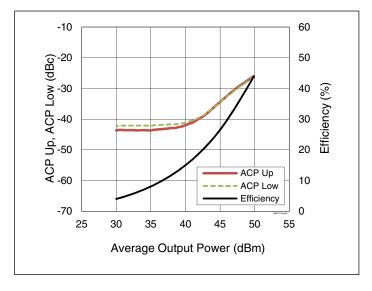


Figure 5. Single-carrier WCDMA Drive-up

 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}, f = 2620 \text{ MHz},$ 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

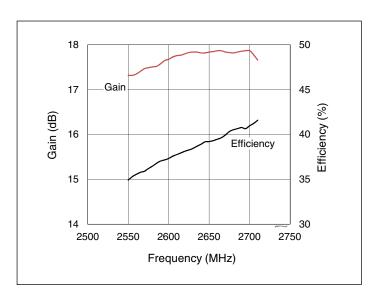
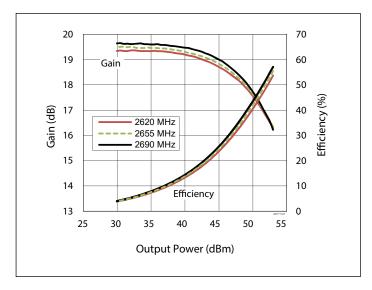
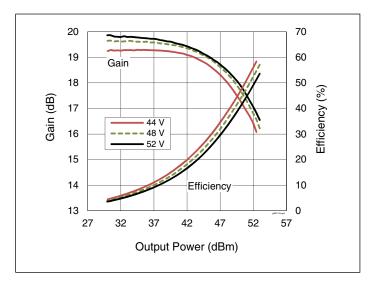


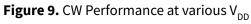
Figure 6. Single-carrier WCDMA Broadband

 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}, \ P_{OUT} = 48.45 \text{ dBm}, \ 3\text{GPP WCDMA signal, } 10 \text{ dB PAR}$

Figure 7. Single-carrier WCDMA Broadband

 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}, P_{OUT} = 48.45 \text{ dBm}$ 3GPP WCDMA signal, 10 dB PAR


Figure 8. CW Performance

 $V_{DD} = 48 \text{ V, I }_{DO} = 320 \text{ mA}$

Typical Performance (cont.)

 $I_{DQ} = 320 \text{ mA}, f = 2690 \text{ MHz}$ (series show supply voltage)

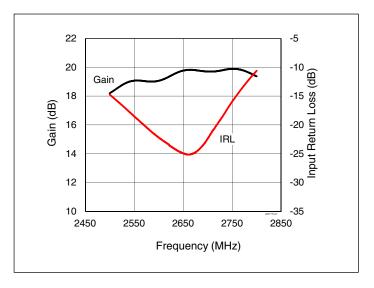
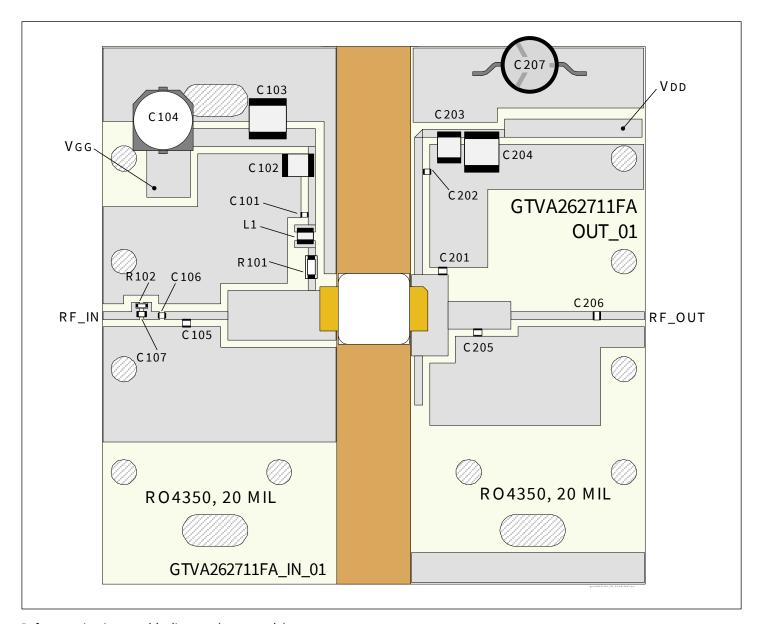


Figure 10. CW Performance Small Signal Gain & Input Return Loss

 $V_{DD} = 48 \text{ V}, I_{DQ} = 320 \text{ mA}$

Load Pull Performance


Pulsed CW signal – 10 µsec, 10% duty cycle; 48 V, 320 mA

			P _{3dB}									
	Class A	В	Max Output Power Max Drain Efficien						iency			
Freq [MHz]	$Z_{s}[\Omega]$	$Z_{l2f0}\left[\Omega ight]$	$Z_{l}[\Omega]$	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η _D [%]
2620	8.3 – j4.7	1.2 + j0	2.75 – j4.56	15.5	55.48	353	60.7	2.5 – j2.94	16.8	54.52	283	68.0
2655	6.7 – j4.3	1.3 + j0	2.79 – j4.59	15.5	55.46	352	60.8	2.14 – j2.85	17.2	53.83	242	66.3
2690	5.6 – j5.2	1.2 + j0	2.85 – j4.50	15.4	55.43	349	60.2	2.46 – j3.03	16.7	54.38	274	65.9

Evaluation Board, 2620 to 2690 MHz

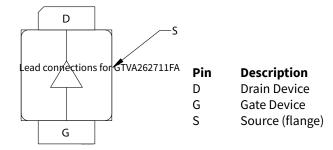
Evaluation Board Part Number	LTN/GTVA262711FA-V2
PCB Information	Rogers 4350, 0.508 mm [.020"] thick, 2 oz. copper, $\varepsilon_{r} = 3.66$

Reference circuit assembly diagram (not to scale)

Components Information

Component	Description	Manufacturer	P/N
Input			
C101	Capacitor, 33 pF	ATC	ATC800A330JT250T
C102	Capacitor, 1 μF	TDK Corporation	C4532X7R2A105M230KA
C103	Capacitor, 10 μF	TDK Corporation	C5750X5R1H106K230KA
C104	Capacitor, 100 μF	Panasonic Electronic Components	EEV-HD1V101P
C105	Capacitor, 1.8 pF	ATC	ATC800A1R8CT250T
C106, C107	Capacitor, 12 pF	ATC	ATC800A120JT250T
L1	Inductor, 22 nH	ATC	0805WL220JT
R101	Resistor, 5.6 ohms	Panasonic Electronic Components	ERJ-8RQJ5R6V
R102	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-3GEYJ100V
Output			
C201	Capacitor, 1.1 pF	ATC	ATC800A1R1CT250T
C202, C206	Capacitor, 12 pF	ATC	ATC800A120JT250T
C203	Capacitor, 1 μF	TDK Corporation	C4532X7R2A105M230KA
C204	Capacitor, 10 μF	TDK Corporation	C5750X5R1H106K230KA
C205	Capacitor, 0.4 pF	ATC	ATC800A0R4CT250T
C207	Capacitor, 220 μF	Panasonic Electronic Components	ECA-2AHG221

Bias Sequencing


Bias On

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias Off

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Pinout Diagram (top view)

Package Outline Specifications - Package H-87265J-2

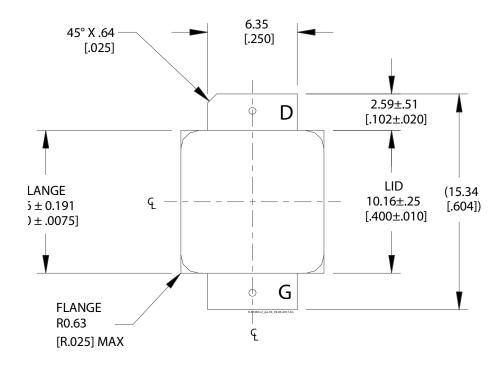


Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
- 2. Primary dimensions are mm. Alternate dimensions are inches.
- 3. All tolerances \pm 0.127 [.005] unless specified otherwise.
- 4. Pins: D drain; G gate; S source.
- 5. Lead thickness: 0.13 ± 0.05 mm [.005 ± .002 inch].
- 6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch].

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.