

GTVA101K42EV

Thermally-Enhanced High Power RF GaN on SiC HEMT 1400 W, 50 V, DC – 1400 MHz

Description

The GTVA101K42EV is a 1400 W GaN on SiC high electron mobility transistor (HEMT) for use in the DC to 1400 MHz frequency band. It is a input matched, high efficiency device in a thermally-enhanced package with bolt-down flange.

Package Types: H-36275-4 PN's: GTVA101K42EV

Features

- GaN on SiC HEMT technology
- Input matched
- Typical pulsed CW performance, 960 1400 MHz, 50 V, single side, 128 μs pulse width, 10% duty cycle
 - Output power at P_{3dB} = 1400 W
 - Efficiency = 68%
 - Gain = 17 dB
- Pb-free and RoHS compliant

RF Characteristics¹

Pulsed CW specifications (tested in the test fixture)

 $V_{DD} = 50 \text{ V}, I_{DQ} = 75 \text{ mA}, P_{OUT(P3dB)} = 1400 \text{ W peak}, f = 1030 \text{ MHz}, pulse width = 128 \mu s, duty cycle = 10\% multiple section = 100 mHz.$

Characteristics	Symbol	Min.	Тур.	Max.	Units
Linear Gain	G_{ps}	17	19	-	dB
Return Loss	R	-	-19	-12	dB
Drain Efficiency	$\eta_{_{D}}$	65	69	-	%
Output Mismatch Stress ²	VSWR	-	-	10:1	Ψ

Notes

 $^{^{1}}$ All published data at T_{CASE} = 25 °C unless otherwise indicated.

² No damage at all phase angles, $V_{DD} = 50 \text{ V}$, $I_{DO} = 75 \text{ mA}$, $P_{OUT} = 1400 \text{ W}$ pulsed.

³ ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristics	Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage	$V_{GS} = -8 \text{ V}, I_{D} = 83.6 \text{ mA}$	V _{(BR)DSS}	125	-	-	V
Drain-Source Leakage Current	$V_{GS} = -6 \text{ V}, V_{DS} = 2 \text{ V}$	I _{DSS}	62.7	75.5	-	Α
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_{D} = 83.6 \text{ mA}$	V _{GS(th)}	-3.8	-3.0	-2.7	V

Recommended Operating Conditions

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Units
Drain Operating Voltage	-	V _{DD}	0	-	50	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 100 \text{ mA}$	V _{GS(Q)}	-	-3.1	-	V

Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Drain-Source Voltage	V _{DSS}	150	V
Gate-Source Voltage	V_{GS}	-10 to +2	V
Gate Current	I _G	167	mA
Drain Current	I _D	48	А
Junction Temperature	T _J	225	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

Parameter	Symbol	Value	Units
Thermal Resistance, Junction to Case ¹	$R_{\theta JC}$	0.127	°C/W
Thermal Resistance, Junction to Case ²	$R_{\theta JC}$	0.167	°C/W
Thermal Resistance, Junction to Case ³	R _{eJc}	0.166	°C/W

Notes:

Electrical Characteristics When Tested in GTVA101K42EV-AMP2

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics 1 (T _c = 25 °C, F ₀ = 1.2 - 1.4 G	Hz Unless Othe	erwise No	ted)			
Output Power ²	P _{out}	-	61	-	dBm	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.8 \text{ A}, P_{IN} = 44 \text{ dBm}$
Power Added Efficiency ²	η	-	55	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.8 \text{ A}, P_{IN} = 44 \text{ dBm}$
Gain ²	G	-	17	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.8 \text{ A}, P_{IN} = 44 \text{ dBm}$

Notes:

 $^{^{1}}T_{CASE} = 85$ °C, $P_{DISS} = 700$ W, 100 μ s pulse width, 10% duty cycle.

 $^{^2}$ T $_{\text{CASE}}$ = 85 °C, P $_{\text{DISS}}$ = 700 W, 500 μs pulse width, 10% duty cycle.

 $^{^3}$ T_{CASE} = 85 °C, P_{DISS} = 700 W, Mode-S signal.

¹Measured in the GTVA101K42EV-AMP2 application circuit.

² Pulsed 500 μs, 10% duty cycle.

² MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

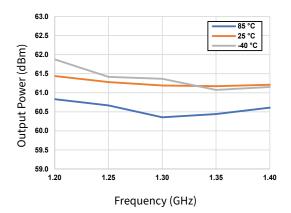


Figure 1. Output Power vs Frequency as a Function of Temperature

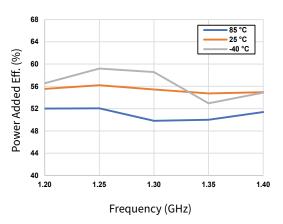


Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

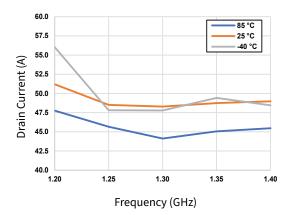


Figure 5. Drain Current vs Frequency as a Function of Temperature

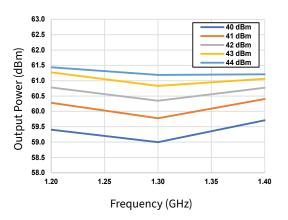


Figure 2. Output Power vs Frequency as a Function of Input Power

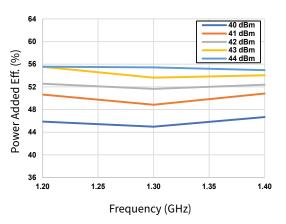


Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

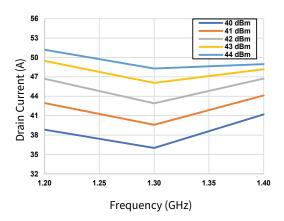


Figure 6. Drain Current vs Frequency as a Function of Input Power

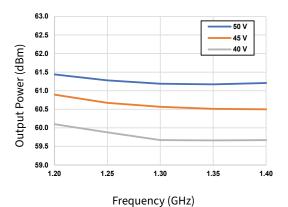


Figure 7. Output Power vs Frequency as a Function of V_D

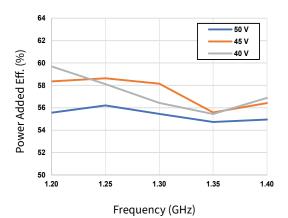


Figure 9. Power Added Eff. vs Frequency as a Function of V_D

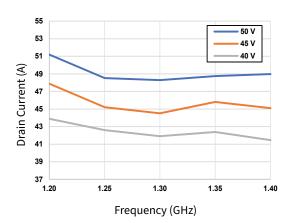


Figure 11. Drain Current vs Frequency as a Function of V_D

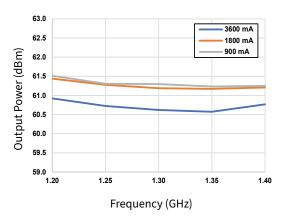


Figure 8. Output Power vs Frequency as a Function of I_{DO}

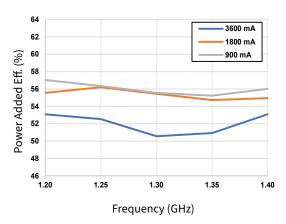


Figure 10. Power Added Eff. vs Frequency as a Function of I_{po}

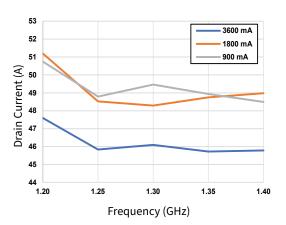


Figure 12. Drain Current vs Frequency as a Function of I_{DO}

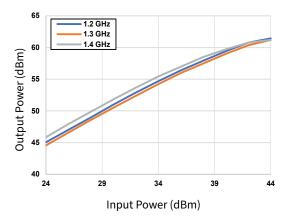


Figure 13. Output Power vs Input Power as a Function of Frequency

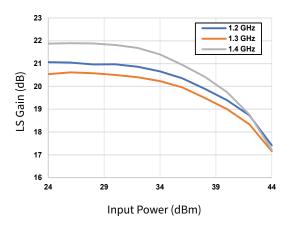


Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

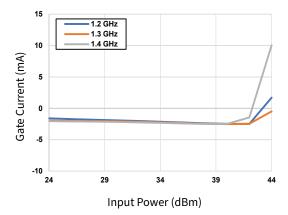


Figure 17. Gate Current vs Input Power as a Function of Frequency

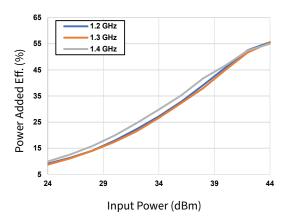


Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

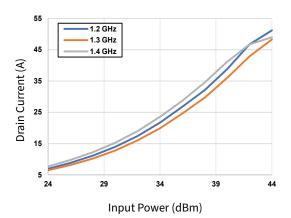


Figure 16. Drain Current vs Input Power as a Function of Frequency

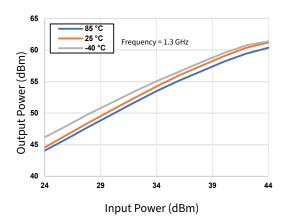


Figure 18. Output Power vs Input Power as a Function of Temperature

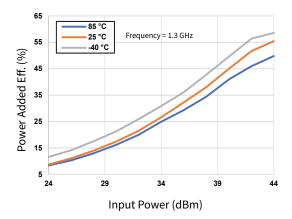


Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

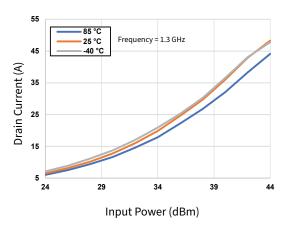


Figure 21. Drain Current vs Input Power as a Function of Temperature

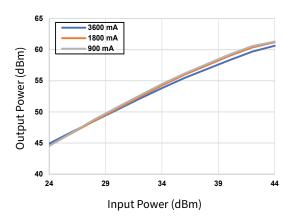


Figure 23. Output Power vs Input Power as a Function of I_{DO}

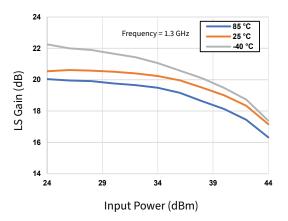


Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

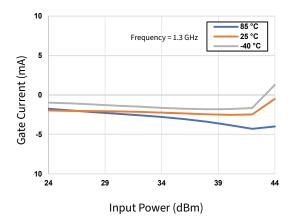


Figure 22. Gate Current vs Input Power as a Function of Temperature

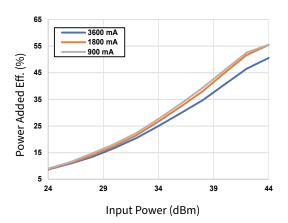


Figure 24. Power Added Eff. vs Input Power as a Function of I_{DO}

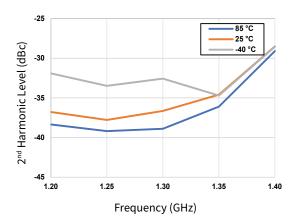


Figure 25. 2nd Harmonic vs Frequency as a Function of Temperature

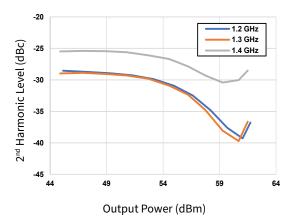


Figure 27. 2nd Harmonic vs Output Power as a Function of Frequency

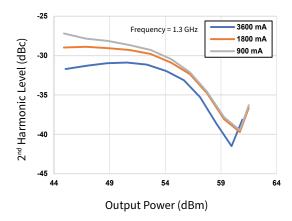


Figure 29. 2nd Harmonic vs Output Power as a Function of I_{no}

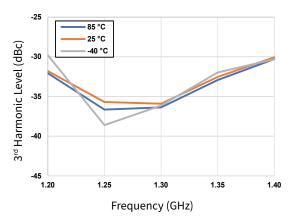


Figure 26. 3rd Harmonic vs Frequency as a Function of Temperature

Figure 28. 3rd Harmonic vs Output Power as a Function of Frequency

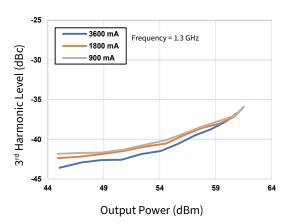


Figure 30. 3^{rd} Harmonic vs Output Power as a Function of I_{DO}

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 1800 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

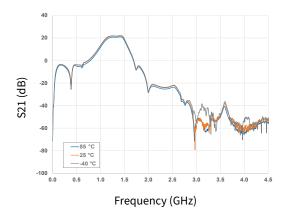


Figure 31. Gain vs Frequency as a Function of Temperature

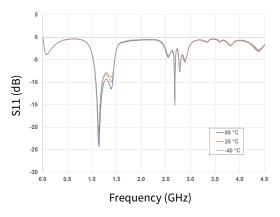


Figure 33. Input RL vs Frequency as a Function of Temperature

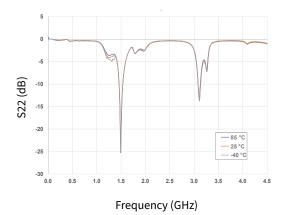


Figure 35. Output RL vs Frequency as a Function of Temperature

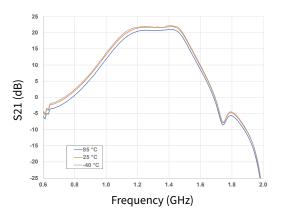


Figure 32. Gain vs Frequency as a Function of Temperature

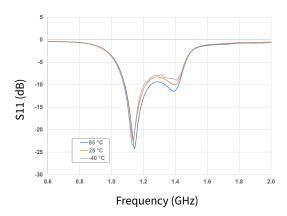


Figure 34. Input RL vs Frequency as a Function of Temperature

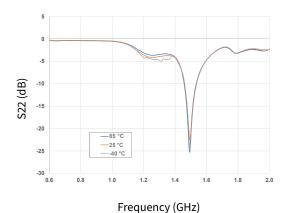


Figure 36. Output RL vs Frequency as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 1800 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

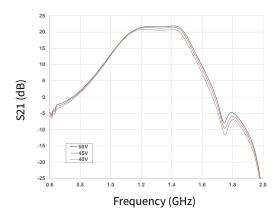


Figure 37. Gain vs Frequency as a Function of Voltage

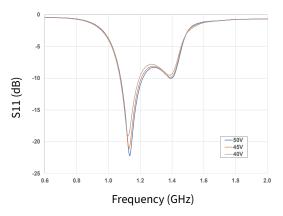


Figure 39. Input RL vs Frequency as a Function of Voltage

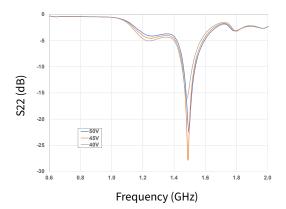


Figure 41. Output RL vs Frequency as a Function of Voltage

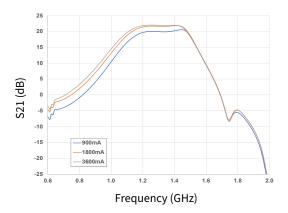


Figure 38. Gain vs Frequency as a Function of I_{DO}

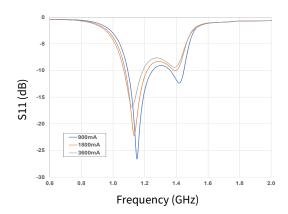
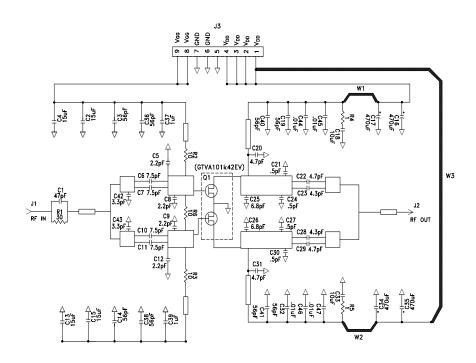
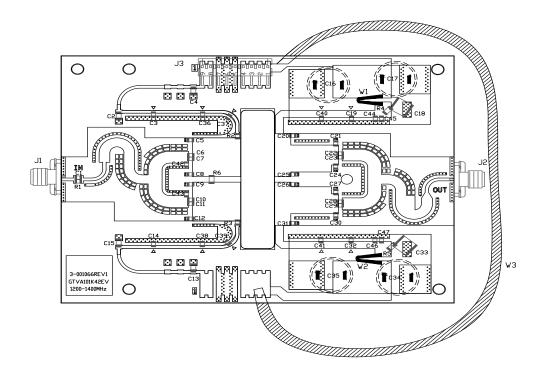


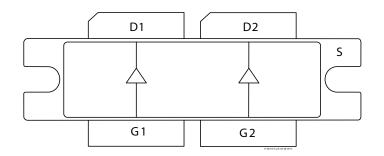
Figure 40. Input RL vs Frequency as a Function of I_{DO}


Figure 42. Output RL vs Frequency as a Function of Voltage

GTVA101K42EV-AMP2 Application Circuit Schematic

GTVA101K42EV-AMP2 Application Circuit



GTVA101K42EV-AMP2 Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 30 OHMs, +/- 1%, 0805, 1/8 W, YAGEO	1
R2, R3	RES, 10 OHMS, +/- 1%, 0805, 1/8 W, YAGEO	2
R4, R5	RES, 1 OHMS, +/- 5%, 1206, 125 mW, AVX	2
R6	RES, 10 OHMS, +/1%, 1206, 1/4 W	1
C1	CAP, 47 pF, +/- 5%, 250 V, 0805, ATC 600 F	1
C2, C4, C13, C15	CAP, 15 uF, +/-20%, 10 V, X7s, 1206, TDK	4
C3, C14, C19, C32, C36, C38, C40, C41	CAP, 56 pF, +/- 5%, 250 V, 0805, ATC, 600 F	8
C5, C8, C9, C12	CAP, 2.2 pF, +/1 pF, 250 V, 0805, ATC 600 F	4
C6, C7, C10, C11	CAP, 7.5 pF, +/25 pF, 250 V, 0805, ATC 600 F	4
C16, C17, C34, C35	CAP, 470 uF, +/-20%, 80 V, Electrolytic, Vishay	4
C18, C33	CAP, 10 uF, +/- 10%, 100 V, X7S, 2220, TDK	2
C20, C22, C29, C31	CAP, 4.7 pF, +/25 pF, 250 V, 0805, ATC 600 F	4
C21, C24, C27, C30	CAP, .5 pF, +/05 pF, 250 V, 0805, ATC 600 F	4
C23, C28	CAP, 4.3 pF, +/25 pF, 250 V, 0805, ATC 600 F	2
C25, C26	CAP, 6.8 pF, +/25 pF, 250 V, 0805, ATC 600 F	2
C37, C39	CAP, 1 uF, 100 V, X7S, 0805, Murata	2
C44, C45, C46, C47	CAP, .01 uF, 50 V, X7R	4
C42, C43	CAP, 3.3 pF, +/1 pF, 250 V, 0805, ATC 600 F	2
W1, W2	Wire, 3.25", 18 AWG	2
W3	Wire, 7", 12 AWG	1
Q1	Transistor, GTVA101K42EV	1

Pinout Diagram (Top View)

Pin	Desc.
D1	Drain Device 1
D2	Drain Device 2
G1	Gate Device 1
G2	Gate Device 2
S	Source (Flange)

Package Outline Specifications

Package H-36275-4

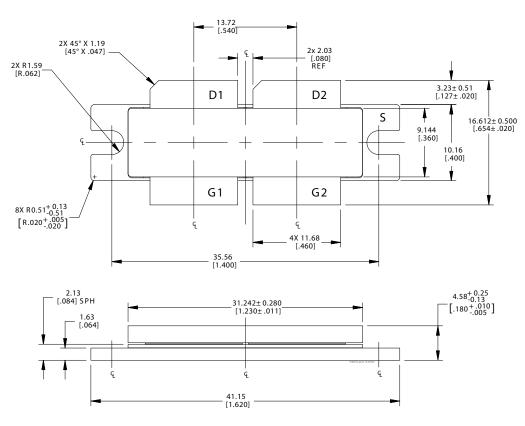


Diagram Notes-unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
- Primary dimensions are mm. Alternate dimensions are inches.
- 3. All tolerances ± 0.127 [.005] unless specified otherwise.
- 4. Pins: D1, D2 drains; G1, G2 gates; S source.
- Lead thickness: 0.127 ±0.051 mm [0.005 ±0.002 inch].
- Gold plating thickness: 1.14 ± 0.38 micron [45 \pm 15 microinch].

Product Ordering Information

Order Number	Description	Unit of Measure	Image
GTVA101K42EV-V1-R0	GaN HEMT, Tape & Reel, 50 pcs	Each	H-36275-4
GTVA101K42EV-V1-R2	GaN HEMT, Tape & Reel, 250 pcs	Each	H-36275-4
LTN/GTVA101K42EV V1	Test Board with GaN HEMT Installed IFF, 1030 MHz	Each	
GTVA101K42EV-AMP2	Test Board with GaN HEMT Installed L-Band Radar, 1.2 - 1.4 GHz	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.