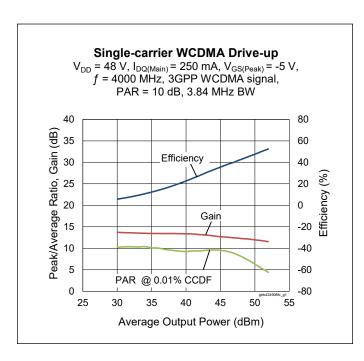


GTRB424908FC/1


Thermally-Enhanced High Power RF GaN on SiC Amplifier, 450 W, 48 V, 3700 – 4000 MHz

Description

The GTRB424908FC/1 is a 450-watt (P_{3dB}) GaN on SiC HEMT D-mode amplifier designed for use in multi-standard cellular power amplifier applications. It features high efficiency, and a thermally-enhanced package with earless flange.

Package Types: H-37248KC-6/2

Features

- GaN on SiC HEMT technology
- Typical Pulsed CW performance, 3800 MHz, 48 V, 100 µs pulse width, 10% duty cycle, combined outputs
 - Output power at P3dB = 450 W
 - Efficiency at P_{3dB} = 61%
- Human Body Model Class 1C (per ANSI/ESDA/ JEDEC JS-001)
- Pb-free and RoHS compliant

Typical RF Characteristics

Single-carrier WCDMA Specifications (tested in the Doherty evaluation board for 3700 - 4000 MHz) $V_{DD} = 48 \text{ V}, I_{DO} = 250 \text{ mA}, P_{OUT} = 56.2 \text{ W}, V_{GS(PEAK)} = -5 \text{ V}, channel \ bandwidth} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} \ \textcircled{@} \ 0.01\% \text{ CCDF}$

	Р _{оит} (dBM)	Gain (dB)	Efficiency (%)	ACPR + (dBc)	ACPR – (dBc)	OPAR (dB)
3700 MHz	47.5	12.4	42.4	-33.7	-33.8	8.2
3800 MHz	47.5	12.7	40.4	-38.0	-38.2	8.5
3900 MHz	47.5	12.8	40.7	-35.8	-35.7	8.6
4000 MHz	47.5	12.4	41.7	-32.5	-35.5	8.5

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!

DC Characteristics

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Drain-source Breakdown Voltage (main)	V	150			W	V = 0V = 10 mA	
Drain-source Breakdown Voltage (peak)	V _{BR(DSS)}	150	_	_	V	$V_{GS} = -8 \text{ V, I}_{D} = 10 \text{ mA}$	
Drain-source Leakage Current (main)				4.4		V - 0VV - 10V	
Drain-source Leakage Current (peak)	DSS	_	_	6.3	mA	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$	
Gate-source Leakage Current (main)	_	_	_	-6.9			
Gate-source Leakage Current (peak)	GSX			-9.9		$V_{GS} = -8 \text{ V}, V_{DD} = 50 \text{ V}$	
Gate Threshold Voltage (main)	V _{GS(th)}	-3.8	-3.1	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 25 \text{ mA}$	
Gate Threshold Voltage (peak)						$V_{DS} = 10 \text{ V}, I_{D} = 36 \text{ mA}$	

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating Voltage	V _{DD}	0	_	50	W	
Gate Quiescent Voltage	V _{GS(Q)}	-3.6	-2.9	-2.1	V	V _{DS} =48 V, I _D = 250 mA

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit		
Drain-source Voltage	V _{DSS}	125			
Gate-source Voltage	V _{GS}	-10 to +2	V		
Operating Voltage	V _{DD}	55			
Gate Current (main)		25.2	A		
Gate Current (peak)	I _G	36	mA		
Drain Current (main)		9.45			
Drain Current (peak)	l _D	13.5	A		
Junction Temperature	T _J	275	%6		
Storage Temperature Range	T _{STG}	-65 to +150	°C		

^{1.} Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

Characteristic	Symbol	Value	Unit	Conditions
Thermal Resistance (main)	D	1.4	°C/W	T _{CASE} = 85 °C, 100 W DC
Thermal Resistance (peak)	κ _{θJC}	1.05	C/VV	T _{CASE} = 85 °C, 134 W DC

^{2.} Product's qualification were performed at 225 °C. Operation at TJ (275 °C) reduces median time to failure.

RF Characteristics

Single-carrier WCDMA Specifications (tested in the Doherty test fixture)

 $V_{DD} = 48 \text{ V}$, $I_{DQ} = 250 \text{ mA}$, $P_{OUT} = 56.2 \text{ W avg}$, $V_{GS(PEAK)} = -5 \text{ V}$, f = 4000 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Gain	G _{ps}	11	12	_	dB
Drain Efficiency	η_{D}	35	42	_	%
Adjacent Channel Power Ratio	ACPR	_	-25	-20	dBc
Output PAR @ 0.01% CCDF	OPAR	7.2	8	_	dB

Ordering Information

Type and Version	Order Code	Package	Shipping
GTRB424908FC/1 V1 R0	GTRB424908FC1V1-R0	H-37248KC-6/2	Tape & Reel, 50 pcs
GTRB424908FC/1 V1 R2	GTRB424908FC1V1-R2	H-37248KC-6/2	Tape & Reel, 250 pcs

MACOM

Typical Performance (data taken in Doherty evaluation board)

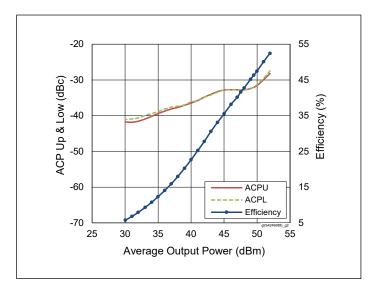


Figure 1. Single-carrier WCDMA Drive-up

 $V_{\rm DD}$ = 48 V, $I_{\rm DQ(Main)}$ = 250 mA, $V_{\rm GS(Peak)}$ = -5 V, f = 4000 MHz, 3GPP WCDMA signal, PAR = 10 dB, BW = 3.84 MHz

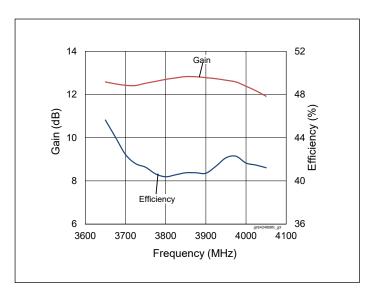


Figure 2. Single-carrier WCDMA Broadband Performance

 $\begin{aligned} \text{V}_{\text{DD}} = 48 \text{ V, I}_{\text{DQ(Main)}} = 250 \text{ mA, V}_{\text{GS(Peak)}} = -5 \text{ V,} \\ \text{P}_{\text{OUT}} = 47.5 \text{ dBm, 3GPP WCDMA signal,} \end{aligned}$ PAR = 10 dB

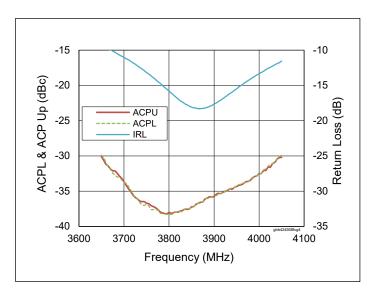


Figure 3. Single-carrier WCDMA Broadband Performance

 $\begin{aligned} V_{DD} &= 48 \text{ V}, \text{ I}_{DQ(\text{Main})} = 250 \text{ mA}, \text{ V}_{GS(\text{Peak})} = \text{-5 V}, \\ P_{OUT} &= 47.5 \text{ dBm}, \text{ 3GPP WCDMA signal}, \end{aligned}$ PAR = 10 dB

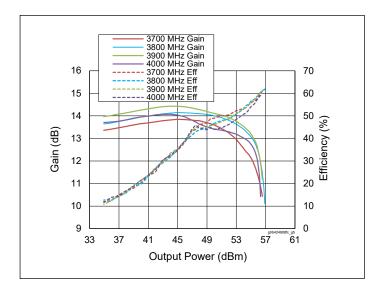
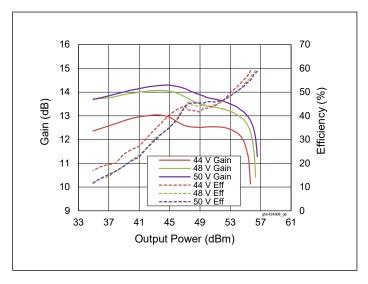
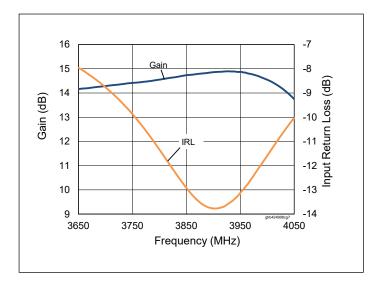



Figure 4. Pulsed CW Performance


 V_{DD} = 48 V, $I_{DQ(Main)}$ = 250 mA, $V_{GS(Peak)}$ = -5 V

Typical RF Performance(cont.)

Figure 6. CW Performance Small Signal Gain & Input Return Loss

 $V_{DD} = 48 \text{ V}, I_{DQ(Main)} = 250 \text{ mA}, V_{GS(Peak)} = -5 \text{ V}$

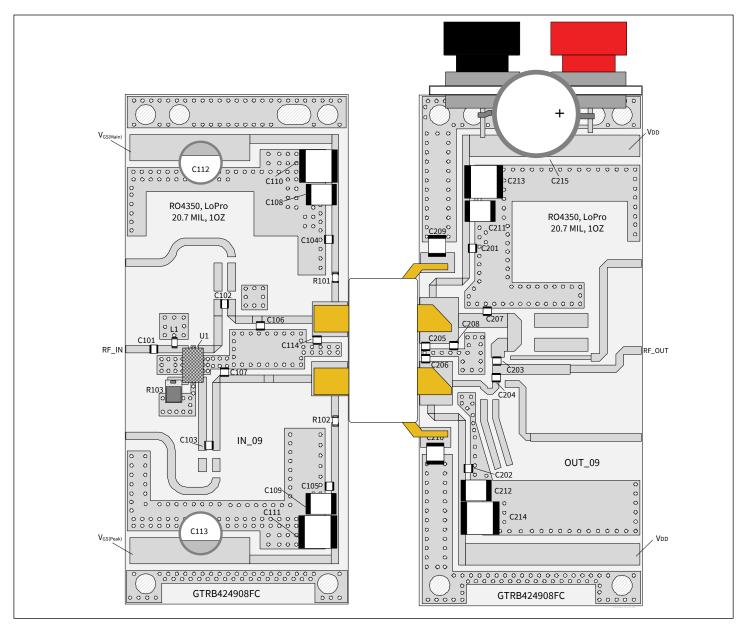
Load Pull Performance

 $\textbf{Main Side Load Pull Performance} - \text{Pulsed CW signal} - 100~\mu\text{sec}, 10\%~\text{duty cycle}, 48~\text{V}, \text{I}_{\text{DQ}} = 250~\text{mA}, \text{class AB}$

			P _{3dB}											
			Max (Output Po	wer			Max D	rain Efficie	ency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]			
3700	14-j22.8	6.7-j13.8	16.9	54	251.2	54.7	9.8-j4.9	19.1	51.7	147.9	64.4			
3800	13.4-j21.2	6.9-j15.3	16.4	53.9	245.5	52.6	7.5-j7	18.9	52.1	162.2	63			
3900	12.4-j22.4	7-j15.1	16.9	53.8	239.9	54	7-j8.8	18.7	52.3	169.8	62.4			
4000	12.1-j26	7.5-j15.6	16.9	53.7	234.4	54.3	7.2-j9.6	18.5	52.1	162.2	62.3			

Peak Side Load Pull Performance – Pulsed CW signal – 100 μ sec, 10% duty cycle, 48 V, V_{GSPK} = –5 V, class C

			P _{3dB}											
			Max	Output Po	wer			Max D	rain Efficie	ency				
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]			
3700	5.1-j21.3	3.8-j7.8	11.7	55.1	323.6	72.3	4-j7.7	11.7	55.00	316.2	72.8			
3800	9.4-j21.2	2.4-j8.8	10.6	55.5	354.8	64.4	3.7-j5.7	11.7	53.80	239.9	78.1			
3900	12.1-j17.5	2.7-j8.9	10.6	55.4	346.7	64.7	3.4-j5.9	11.3	53.70	234.4	73.6			
4000	11.3-j13.2	2.8-j9	10.6	55.4	346.7	64.7	2.9-j6.1	11.5	53.50	223.9	73.8			


Peak Side Load Pull Performance – Pulsed CW signal – 100 μ sec, 10% duty cycle, 48 V, I $_{DO}$ = 360 mA, class AB

			P _{3dB}										
			Max C	Output Po	wer			Max Dı	ain Efficie	ncy			
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]		
3700	5.1-j21.3	2.6-j8.8	14.7	55.8	380.2	61.0	3.8-j6.8	16.4	54.30	269.2	67.3		
3800	9.4-j21.2	2.4-j8.9	14.5	55.8	380.2	60.0	3.6-j4.1	16.9	52.20	166	68.8		
3900	12.1-j17.5	2.7-j9	14.7	55.7	371.5	61.1	2.8-j6.5	16.6	54.10	257	68.4		
4000	10.6-j16.8	2.7-j9.3	14.9	55.6	363.1	59.4	2.9-j6.4	17.1	53.40	218.8	67.9		

Doherty Evaluation Board, 3700 - 4000 MHz

Evaluation Board Part Number	LTAGTRB424908FC1E4
PCB Information	Rogers 4350 LoPro, 0.526 mm [0.0207"] thick, 1 oz. copper, ϵ_{r} = 3.66

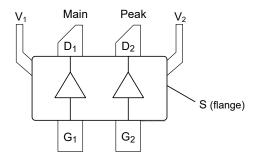
Reference circuit assembly diagram (not to scale)

Doherty Evaluation Board (cont.)

Components Information

Component	Description	Manufacturer	P/N
Input			
C101, C102, C103, C104, C105	Capacitor, 8.2 pF	ATC	ATC800A8R2JT250XT
C106	Capacitor, 0.8 pF	ATC	ATC800A0R8CT250XT
C107	Capacitor, 0.4 pF	ATC	ATC800A0R4CT250T
C108, C109	Capacitor, 100 V, 1 μF	TDK Corporation	C4532X7R2A105K230KA
C110, C111	Capacitor, 100 V, 10 μF	TDK Corporation	C5750X7S2A106M230KB
C112, C113	Capacitor, 35 V, 100 μF	Panasonic Electronic Components	EEE-FT1V101AP
C114	Capacitor, 0.1 pF	ATC	ATC800A0R1CT250T
R101, R102	Resistor, 5.6 ohms	Panasonic Electronic Components	ERJ-8RQJ5R6V
R103	Resistor, 50 ohms	Richardson	C8A50Z4B
L1	Inductor, 6.8 nH	EPCOS - TDK Electronics	B82496C3689J000
U1	Hybrid Coupler	Anaren	X3C35F1-03S
Output			
C201, C202, C203, C204	Capacitor, 8.2 pF	ATC	ATC800A8R2JT250XT
C205, C206	Capacitor, 0.6 pF	ATC	ATC800A0R6CT250XT
C207	Capacitor, 0.9 pF	ATC	ATC800A0R9CT250XT
C208	Capacitor, 0.2 pF	ATC	ATC800A0R2CT250XT
C209, C210	Capacitor, 100 V, 4.7 μF	TDK Corporation	C4532X7S2A475M230KB
C211, C212	Capacitor, 100 V, 1 μF	TDK Corporation	C4532X7R2A105K230KA
C213, C214	Capacitor, 100 V, 10 μF	TDK Corporation	C5750X7S2A106M230KB
C215	Capacitor, 220 μF	Panasonic Electronic Components	ECA-2AHG221

Bias Sequencing


Bias On

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias Off

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Pinout Diagram (top view)

Pin	Description
D1	Drain Device 1
D2	Drain Device 2
G1	Gate Device 1
G2	Gate Device 2
V1	Drain video decoupling and no DC bias
V2	Drain video decoupling and no DC bias
S	Source (flange)

Lead connections for GTRB424908FC/1

Package Outline Specifications - Package H-37248KC-6/2

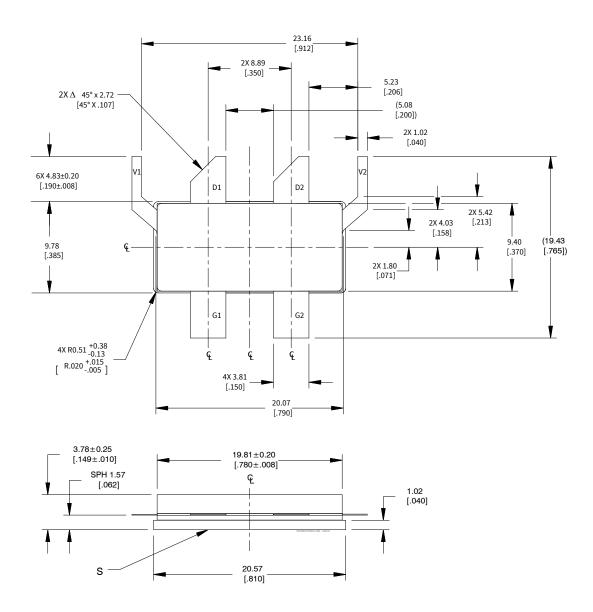


Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994
- 2. Primary dimensions are mm; alternate dimensions are inches
- 3. All tolerances ± 0.127 [.005]
- 4. Pins: D1, D2 drain, G1, G2 gate, V1, V2 drain video decoupling and no DC bias, S source (flange)
- 5. Lead thickness: 0.127 +0.05/-0.025 [.005 +.002/-.001]
- 6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.