

GTRB266502FC

Rev. V1

Features

- GaN on SiC Technology
- Input & Output Matched
- Asymmetric Design:

Main: P3dB = 297 W Peak: P3dB = 416 W

- Pulsed CW Performance: 2690 MHz, 48 V, 10 μs
 Pulse Width, 10% Duty Cycle, Combined Outputs
- Output Power @ P3dB = 630 W
- Efficiency @ P3dB = 67%
- Low Thermal Resistance
- RoHS* Compliant

Applications

Cellular Power

Description

The GTRB266502FC is a 630 W (P3dB) GaN on SiC amplifier designed for use in multi-standard cellular power applications. It features high efficiency, and a thermally-enhanced package with earless flange.

Typical RF Performance

Single-Carrier WCDMA Specifications¹:

 V_{DD} = 48 V, I_{DQ} = 320 mA, $V_{GS(PEAK)}$ = -5.5 V, T_{C} = 25°C, Channel Bandwidth = 3.84 MHz, Peak/ Average = 10 dB @ 0.01% CCDF

Parameter	Frequency (MHz)	Units	Typical
Output Power	2620 2655 2690	dBm	49.5 49.5 49.5
Gain	2620 2655 2690	dB	15.3 15.4 15.3
Efficiency	2620 2655 2690	%	50.5 51.2 51.3
ACPR+	2620 2655 2690	dBc	-31.9 -31.9 -31.9
ACPR-	2620 2655 2690	dBc	-31.9 -31.7 -31.7
OPAR	2620 2655 2690	dB	8.8 8.7 8.6

^{1.} Measurements taken on Evaluation Board

Functional Schematic

Pin Configuration

Pin#	Function
D1	Drain Device 1 (main)
D2	Drain Device 2 (peak)
G1	Gate Device 1 (main)
G2	Gate Device 2 (peak)
S	Source (flange)

Ordering Information

Part Number	Package
GTRB266502FC-V1-R0	50 piece reel
GTRB266502FC-V1-R2	250 piece reel

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

GTRB266502FC

Rev. V1

RF Characteristics, Single-Carrier WCDMA Specifications²:

 $V_{\rm DD}$ = 48 V, $I_{\rm DQ}$ = 320 mA, $V_{\rm GS(PEAK)}$ = -5.5 V, $T_{\rm C}$ = 25°C, f = 2690 MHz, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Frequency Test Conditions (MHz)	Units	Min.	Тур.	Max.
Gain	G_{ps}	dB	13	14	_
Drain Efficiency	μ_{D}	%	45	49	
Adjacent Channel Power Ratio	ACPR	dBc	_	-27.5	-24
Output PAR @ 0.01% CCDF	OPAR	dB	7.5	8	_

^{2.} Measurements taken in Doherty Production Test Fixture

DC Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 10 mA Main, Peak	V	150	_	_
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V Main Peak	mA	_	_	6.3 8.8
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DD} = 50 V Main Peak	mA	_	_	-9.9 -13.9
Gate Threshold Voltage	V_{DS} = 10 V, I_{D} = 36 mA, Main V_{DS} = 10 V, I_{D} = 50 mA, Peak	V	-3.8	-3.1	-2.3

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage	_	V	0	_	50
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 320 mA	V	-3.6	-3.0	-2.1

GTRB266502FC Rev. V1

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Drain Source Voltage	125 V
Gate Source Voltage	-10 V to +2 V
Operating Voltage	55 V
Gate Current main Peak	36.0 mA 54.4 mA
Drain Current main peak	13.5 A 18.9 A
Junction Temperature	+275°C
Storage Temperature	-65°C to +150°C

^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Thermal Resistance (R _{eJC}) main peak	T _C = +85°C, 48 V 131 W DC 141 W DC	°C/W	_	1.1 1.0	_

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

^{4.} MACOM does not recommend sustained operation near these survivability limits.

^{5.} Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

GTRB266502FC Rev. V1

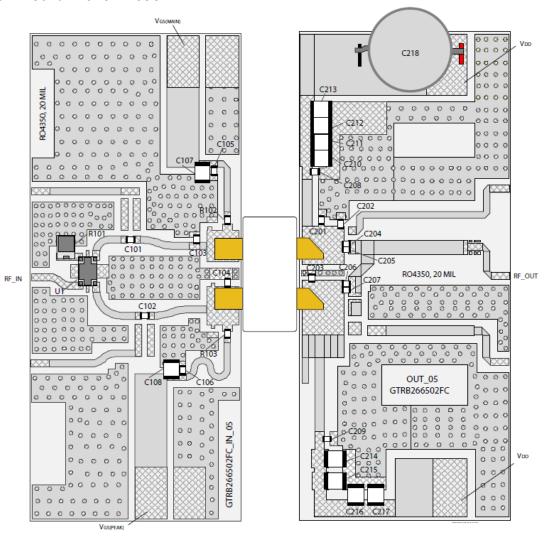
Load Pull Performance: Pulsed CW Signal: 10 µs, 10% Duty Cycle

Main Side:

		Maximum Output Power						
		V _{DS} = 48 V, I _{DQ} = 360 mA, T _C = 25°C, P3dB, Class AB						
Frequency (MHz)	Z_{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D (%)		
2620	12.0 - j6.1	2.6 - j7.3	16.0	55.47	352	63		
2655	10.7 - j3.4	2.6 - j7.3	16.0	55.36	344	63		
2690	9.2 - j1.2	2.7 - j7.6	16.1	55.48	353	65		

		Maximum Drain Efficiency					
		,	V_{DS} = 48 V, I_{DQ} = 360 mA, T_{C} = 25°C, P3dB, Class AB				
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D (%)	
2620	12.0 - j6.1	4.6 - j5.7	17.6	53.94	248	71	
2655	10.7 - j3.4	4.5 - j6.5	17.6	54.10	257	71	
2690	9.2 - j1.2	4.6 - j6.0	17.5	54.00	250	71	

Peak Side:


		Maximum Output Power						
		V _{DS} = 48 V, V _{GS(PEAK)} = -5 V, T _C = 25°C, P3dB, Class C						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D (%)		
2620	3.0 - j12.1	1.7 - j5.9	12.7	56.31	428	61		
2655	3.3 - j12.3	1.7 - j6.1	12.6	56.33	430	61		
2690	4.2 - j12.3	1.5 - j6.1	13.0	56.33	430	60		

		Maximum Drain Efficiency					
		V _{DS} = 48 V, V _{GS(PEAK)} = -5 V, T _C = 25°C, P3dB, Class C					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} (Ω)	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D (%)	
2620	3.0 - j12.1	1.3 + j4.5	14.0	54.77	300	75	
2655	3.3 - j12.3	1.1 + j4.5	14.1	54.10	257	74	
2690	4.2 - j12.3	1.1 + j4.5	14.2	53.70	234	74	

GTRB266502FC Rev. V1

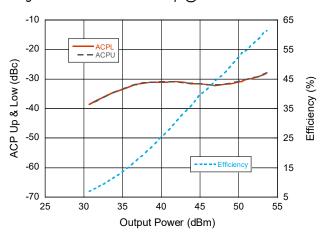
Evaluation Board: 2620 - 2690 MHz

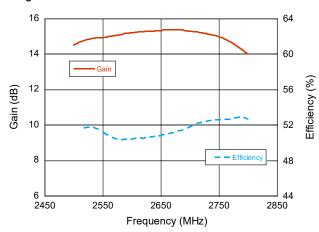
Parts List for Evaluation Board: 2620 - 2690 MHz

Component	Description	Manufacturer	Manufacturer P/N
Input	,		'
C101, C102, C105, C106	Capacitor, 12 pF	ATC	ATC800A120JT250X
C103	Capacitor, 1.6 pF	ATC	ATC800A1R6CT250X
C104	Capacitor, 1.4 pF	ATC	ATC800A1R4CT250X
C107, C108	Capacitor, 10 μF, 100 V	Murata	GRM32EC72A106KE05L
R101	Resistor, 50 Ω	Richardson	C8A50Z4A
R102, R103	Resistor, 10 Ω	Panasonic	ERJ-3GEYJ100V
U1	Hybrid Coupler	Anaren	X3C25F1-02S
Output			
C201 - C203	Capacitor, 0.8 pF	ATC	ATC800A0R8CT250X
C204 - C209	Capacitor, 12 pF	ATC	ATC800A120JT250X
C210 - C218	Capacitor, 10 μF, 100 V	Murata	GRM32EC72A106KE05L

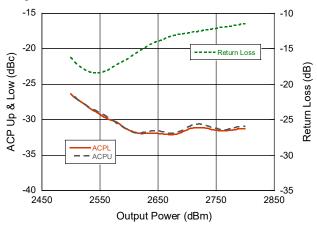
5

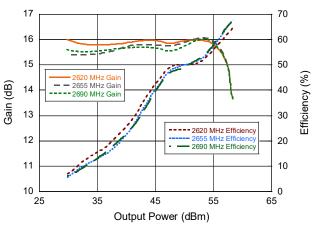
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

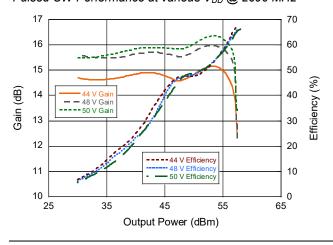

Visit www.macom.com for additional data sheets and product information.

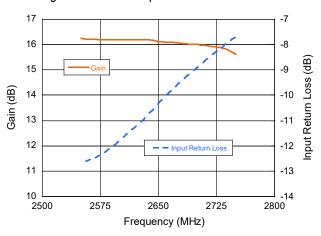

GTRB266502FC Rev. V1

Typical Performance Curves: Data taken in Evaluation Board


Single-Carrier WCDMA Drive-up @ 2690 MHz


Single-Carrier WCDMA Broadband


Single-Carrier WCDMA Broadband

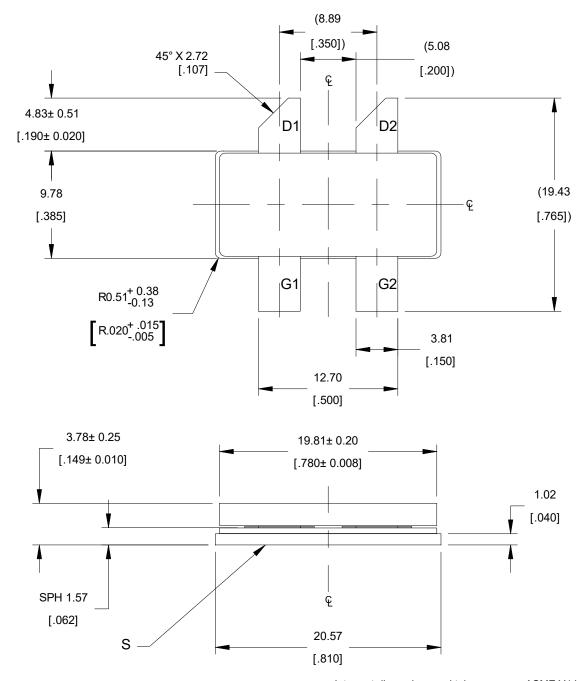

Pulsed CW Performance

Pulsed CW Performance at various V_{DD} @ 2690 MHz

Small Signal CW Gain & Input Return Loss

6

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.

GTRB266502FC

Rev. V1

Lead-Free Outline Drawing H-37248C-4

Interpret dimensions and tolerances per ASME Y14.5M-1994 Primary dimensions are mm; alternate dimensions are inches All tolerances ± 0.127 [0.005]

Lead thickness: 0.13 ± 0.05 mm [0.005 ± 0.002 inch] Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

GTRB266502FC

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.