

ENGLA00262A

Rev. V1

Features

Operation Across 3 - 8 GHz

Small Signal Gain: 15 dB

Noise Figure: 2.1 dB

I/O Return Loss: 15 dB

OIP3: 21 dBm (3 V, 13 mA)

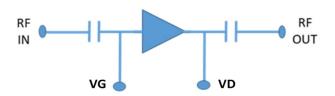
• Die Size:

2.65 x 1.41 x 0.1 mm

3.74 sq. mm 0.104 x 0.056 inch

RoHS* Compliant

Applications


- S- & C-Band radar / driver amplifier functions; SATCOM
- Radio receivers / transmitters when biased for linearity
- · Test & Measurement Systems

Description

The ENGLA00262A is a wideband GaAs pHEMT one-stage 15 dB gain low noise distributed amplifier, operating across 3 to 8 GHz. The design is 50 ohm matched. The LNA has a typical noise figure of 2.1 dB across 3 to 8 GHz, at room temperature. Output third-order intercept point (OIP3) is typically above 20 dBm at 3 V, 13 mA bias. The amplifier has gold backside metallization and is designed for gold-tin eutectic or high thermal conductivity silver epoxy attachment.

Functional Block Diagram

MMIC RF ports are DC-blocked. RF ports designed for 50 ohms.

Ordering Information

Part Number	Package		
ENGLA00262A	Die		

Visit www.macom.com for additional data sheets and product information.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

ENGLA00262A

Rev. V1

Electrical Specifications:

Freq. = 3 - 8 $\dot{G}Hz$, T_A = +25°C, VD = 3.0 V; IDS = 13.2 mA (Iq), $VG \sim$ +0.48 V

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Small Signal Gain	_	dB	13	15	_
Noise Figure	_	dB	_	2.1	2.8
Input Return Loss	_	dB	12	15	_
Output Return Loss	_	dB	10	15	_
Output IP3	_	dBm	18	21	_
Supply Current	_	mA	_	13.2	25.0
Thermal Resistance	includes 25-µm thick AuSn solder mount	°C/W	_	600	_

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Units
Drain Voltage	_	3	4	V
Gate Voltage	_	0.48	0.7	V
Quiescent Drain Current	_	13	25	mA

Handling Procedures

Please observe the following precautions to avoid damage:

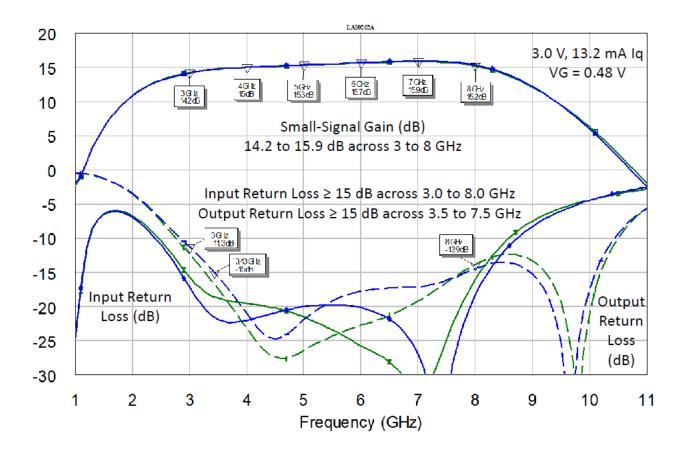
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum			
Drain Voltage	6 V			
Gate Voltage	1 V			
RF Input Power	20 dBm			
Operating Temperature	-55°C to +100°C			
Storage Temperature	-65°C to +150°C			

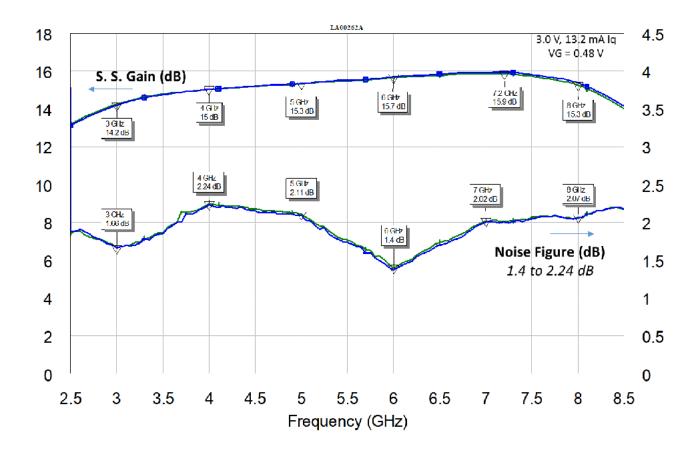
^{1.} Exceeding any one or combination of these limits may cause permanent damage to this device.


MACOM does not recommend sustained operation near these survivability limits.

ENGLA00262A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

Gain and In / Out Return Loss (for two ENGLA00262A amplifiers): T = 25 °C



ENGLA00262A Rev. V1

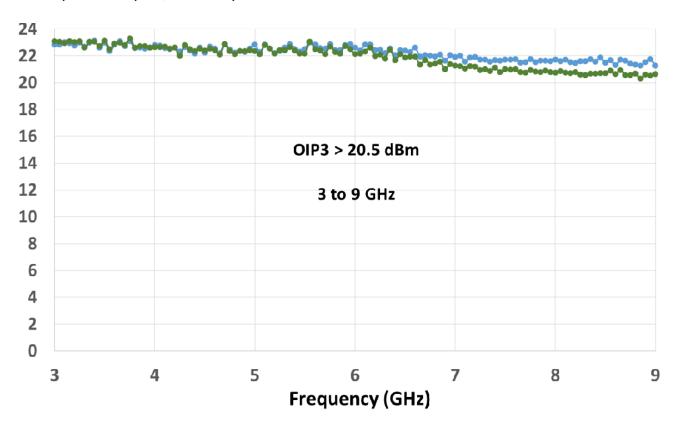
Measured RF Data: With Wirebonds and External Microstrip Flares

Noise Figure <2.3 dB (for two ENGLA00262A amplifiers): T = 25 °C

ENGLA00262A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

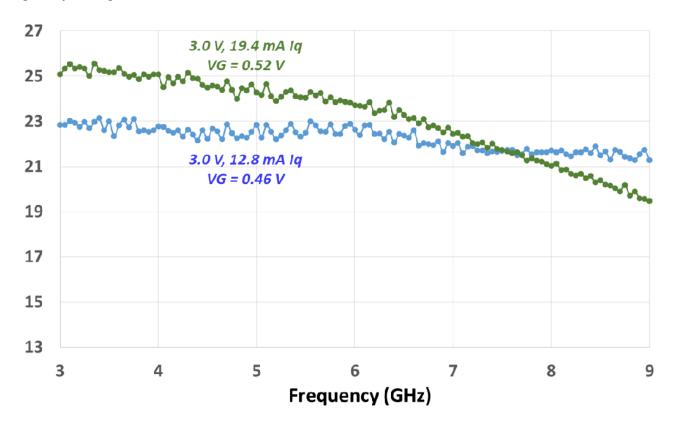
S-Parameters: T_A = +25°C, VD = 3.0 V; IDQ = 13.2 mA (Iq), VG ~ +0486 V


Freq	S	11	į,	\$21	\$12		\$22	
	Mag	angle	Mag	angle	Mag	angle	Mag	angle
(GHZ)	(DB)	(deg)	(DB)	(deg)	(DB)	(deg)	(DB)	(deg)
2.00	-6.98	-98.48	10.89	-149.78	-24.37	76.59	-3.44	-116.85
2.25	-8.66	-122.15	12.22	-175.50	-22.90	53.77	-5.12	-132.59
2.50	-10.96	-142.99	13.12	160.54	-21.89	32.81	-7.11	-146.60
2.75	-13.83	-160.78	13.72	138.59	-21.15	13.96	-9.24	-158.18
3.00	-17.13	-172.46	14.20	117.95	-20.57	-3.42	-11.23	-169.18
3.25	-20.04	-176.68	14.55	98.15	-20.13	-19.86	-13.25	178.54
3.50	-21.85	-176.71	14.76	79.40	-19.81	-35.37	-15.53	164.29
3.75	-22.39	-178.15	14.91	61.34	-19.54	-50.04	-18.05	147.33
4.00	-22.15	175.95	15.04	44.06	-19.32	-63.91	-20.84	124.88
4.25	-21.59	166.55	15.11	27.24	-19.14	-77.23	-23.47	93.02
4.50	-21.08	154.23	15.21	10.77	-18.96	-90.31	-24.46	52.22
4.75	-20.58	142.23	15.28	-5.23	-18.79	-103.05	-23.33	14.95
5.00	-20.22	129.86	15.35	-21.36	-18.62	-115.46	-21.59	-12.31
5.25	-19.98	117.55	15.45	-37.24	-18.48	-127.74	-20.04	-33.61
5.50	-19.79	107.24	15.51	-52.99	-18.34	-140.03	-18.88	-51.68
5.75	-19.94	96.43	15.58	-69.22	-18.18	-152.27	-18.12	-67.43
6.00	-20.16	87.31	15.71	-85.29	-18.02	-164.39	-17.65	-82.49
6.25	-20.73	78.72	15.76	-101.60	-17.88	-176.42	-17.39	-95.91
6.50	-21.69	71.24	15.84	-118.53	-17.73	171.36	-17.34	-108.66
6.75	-23.30	61.96	15.91	-135.56	-17.59	158.85	-17.39	-119.67
7.00	-26.19	54.28	15.93	-153.30	-17.45	146.31	-17.38	-129.13
7.25	-32.96	48.13	15.94	-171.53	-17.34	133.59	-17.11	-137.82
7.50	-36.80	-152.78	15.83	169.74	-17.24	120.54	-16.46	-146.18
7.75	-24.35	-159.30	15.64	149.88	-17.16	107.23	-15.55	-156.86
8.00	-18.69	-169.88	15.38	129.90	-17.13	93.80	-14.62	-169.95
8.25	-14.79	177.84	14.84	109.35	-17.17	80.15	-13.86	173.76
8.50	-12.00	165.87	14.17	87.85	-17.30	66.07	-13.54	155.75
8.75	-9.82	153.90	13.35	67.21	-17.48	51.81	-13.83	136.58
9.00	-8.23	142.27	12.19	46.54	-17.70	37.81	-15.09	116.63

ENGLA00262A Rev. V1

Measured RF Data: With Wirebonds and External Microstrip Flares

Output Third-Order Intercept Point: (2 ENGLA00262A amplifiers) T = 25 °C, VD = 3.0 V, IDQ = 12.8 mA, VG = 0.46 V



ENGLA00262A Rev. V1

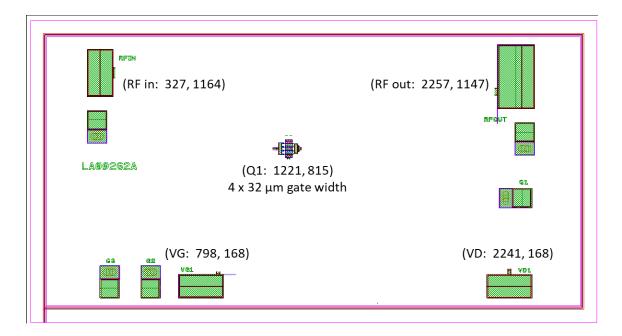
Measured RF Data: With Wirebonds and External Microstrip Flares

Output Third-Order Intercept Point: T = 25 °C Higher operating current increases OIP3 below 7 GHz

ENGLA00262A Rev. V1

MMIC Assembly Drawing: External Microstrip Flares, 150 pF Bypass Capacitors, & Bond Wires

External microstrip flare dimensions (on 5-mil alumina): RF input: 116 μm x 209 μm RF output: 130 μm x 416 μm External microstrip flare External microstrip flare 50-ohm line width: 120 μm RF input RF output (2650, 1410) 600 μm (RF in: 327, 1164) (RF out: 2257, 1147) ~24 mils 400 µm ~ 16 mils (Q1: 1221, 815) 1-mil diameter gold 1-mil diameter gold 4 x 32 μm gate width bond wire length: bond wire lengths (2): 1 mm (~40 mils) 1.5 mm (~ 60 mils) (VG: 798, 168) (VD: 2241, 168) (0, 0)150 pF 150 pF ceramic ceramic capacitor capacitor to + VG to + VD


Assembly Comments

- 1. If mounting the MMIC using either AuSn solder, or high thermal conductivity silver epoxy, the regions underneath the FET heat sources should be void free. Even small voids underneath the FETs could cause FET channel temperature to significantly increase.
- 2. RF ports are DC blocked.
- 3. At X-band, RF I/O port impedances are near 50 ohms.

ENGLA00262A Rev. V1

Outline Drawing – MMIC Dimensions: 2.65 mm x 1.41 mm FET (heat source) and bond pad center coordinates shown (µm)

Notes:

- 1. All dimensions are given in micrometers (μm) unless specified. Typ. tolerance: +25 μm / -25 μm.
- GaAs thickness (excluding front side/back side metallization): 100 μm. Typical tolerance +/- 10 μm.
- 3. Backside metallization is gold.
- 4. Bond pad metallization is gold.

ENGLA00262A

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.