4-Bit, Ku-Band Core Chip 10.70 - 12.75 GHz

CGY2179UH/C1

Rev. V1

Features

Gain: 12 dB @ 11.7 GHz

Noise Figure: 1.9 dB @ 11.7 GHz
RMS Phase Error: 7° @ 11.7 GHz

RMS Amplitude Error: 0.6 dB @ 11.7 GHz

• Output P1dB: 3 dBm

Input Return Loss: -15 dB @ 11.7 GHzOutput Return Loss: -12 dB @ 11.7 GHz

Total Power Consumption: 200 mW

Chip Size: 2.12 x 2.43 x 0.1 mm

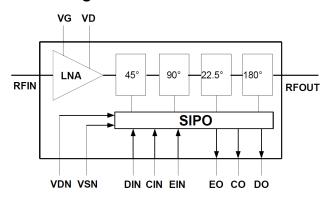
Tested 100%

Samples & Demo Boards Available

RoHS* Compliant

Applications

- Radar, Antennas
- Telecommunication
- Instrumentation


Description

The CGY2179UH/C1 is a high performance 4-bit Core Chip operating in Ku-band. It includes a 4-bit phase shifter and a LNA. It has a phase shifting range of 360°, and a LSB of 22.5°. It covers the frequency range from 10.7 to 12.75 GHz.

The on-chip control logic with serial input register minimizes the number of bonding pads and greatly simplifies the interfacing to this device.

This die is manufactured using 0.18 µm gate length pHEMT Technology ED02AH. The MMIC uses gold bond pads and backside metallization and is fully protected with Silicon Nitride passivation to obtain the highest level of reliability. This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

Block Diagram

Ordering Information

Part Number	Package
CGY2179UH/C1	Bare Die

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

4-Bit, Ku-Band Core Chip 10.70 - 12.75 GHz

CGY2179UH/C1

Electrical Specifications^{1,2}: Freq. = 11.7 GHz, V_D = +2 V, V_G = -0.3 V, T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Supply Voltage	Positive Negative Drain	V	+4.5 -5.5 +1.8	+5.0 -5.0 +2.0	+5.5 -5.5 +2.2
Current	Positive Negative Drain ($V_G = -0.3 \text{ V}$)	mA	_	12 5 55	_
Gain	_	dB	10	12	
Noise Figure	@ Reference State	dB	_	1.9	_
Input Return Loss	All States	dB	_	-15	_
Output Return Loss	All States	dB	_	-12	_
Phase Range	_	٥	_	360	_
RMS Phase Error	with regards to the 16 phase states	٥	_	7	_
RMS Gain Variation	with regards to the 16 phase states	dB	_	0.6	_
P1dB	_	dB	_	3	_
Serial Data Rate	_	Mbps	_	10	_

^{1.} The RMS value is the root mean square of the error defined as below:

$$x_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} = \sqrt{x_i^2 + \sigma_{x_i}^2}$$

^{2.} Where x_i is the difference between the measured value and the theoretical value, x_i is the mean value of the N x_i, and σxi is the standard deviation of x_i.

Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum
Supply Voltage	
Positive	-1 V to +6 V
Negative	-6 V to +1 V
Digital	-1 V to +6 V
Drain	-1 V to +3 V
Gate	-0.4 V to 0 V
Input Power	0 dBm
Junction Temperature	+150°C
Storage Temperature	-55°C to +150°C

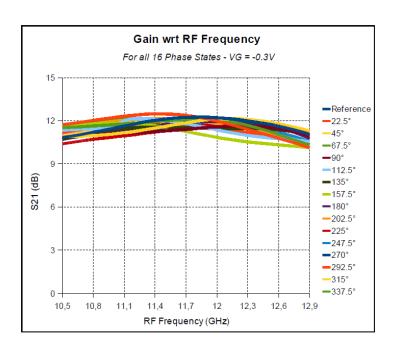
^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

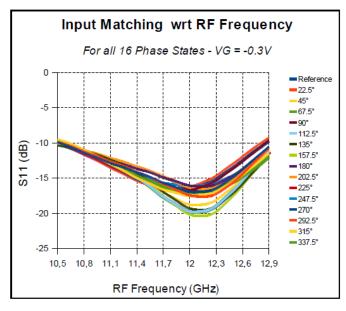
Operating Conditions

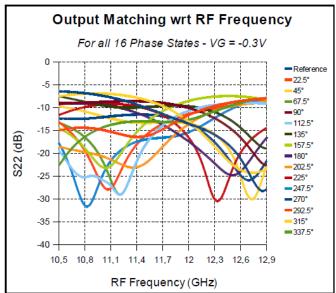
Parameter	Absolute Maximum
Supply Voltage	
Positive	0 V to +5 V
Negative	-5 V to 0 V
Digital	0 V to +5 V
Drain	0 V to +2 V
Gate	-0.4 V to 0 V
Input Power	0 dBm
Operating Temperature	-40°C to +85°C

Handling Procedures

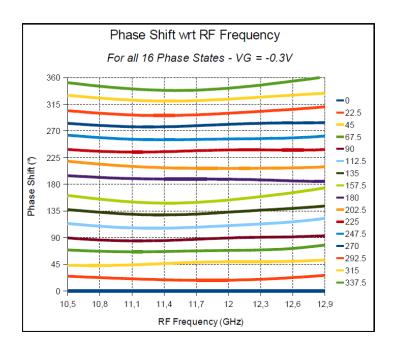
Please observe the following precautions to avoid damage:

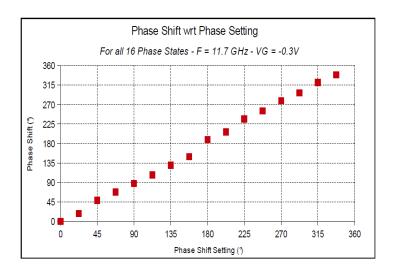

Static Sensitivity

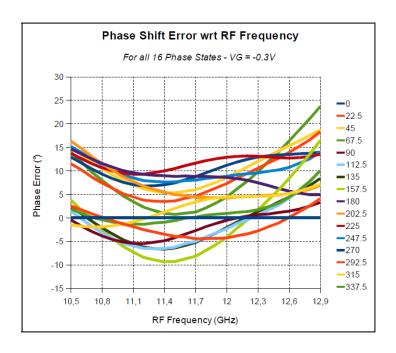

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

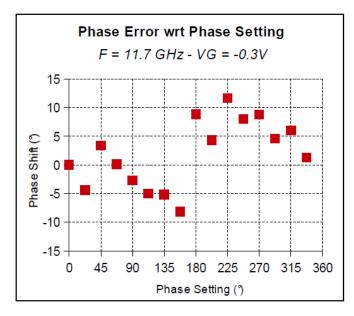

MACOM does not recommend sustained operation near these survivability limits.

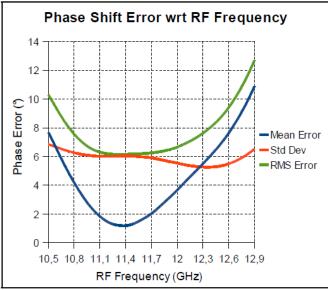
Typical Performance Curves: On Wafer Measurements



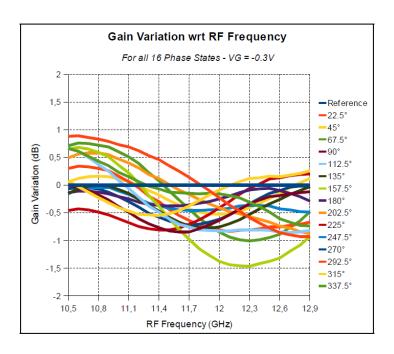


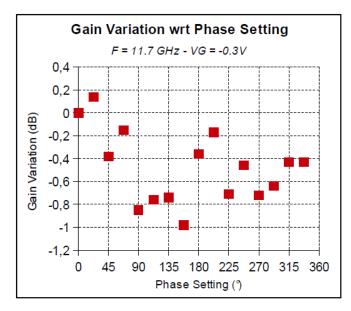

Typical Performance Curves: On Wafer Measurements

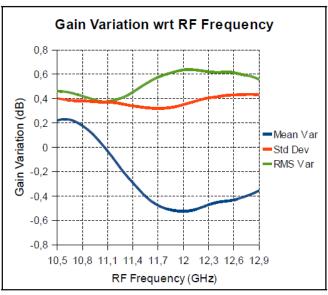




Typical Performance Curves: On Wafer Measurements

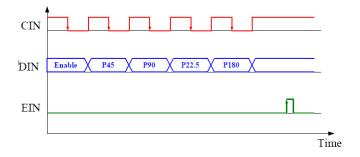






Typical Performance Curves: On Wafer Measurements

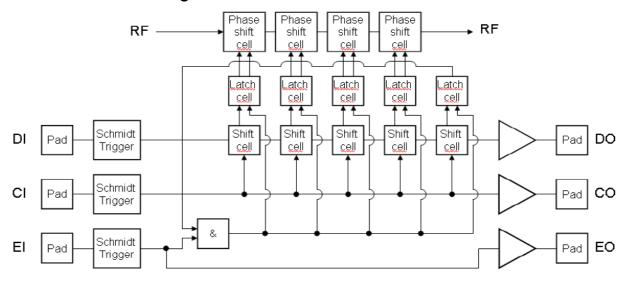
For further information and support please visit: https://www.macom.com/support


Data (Reference State LOW)

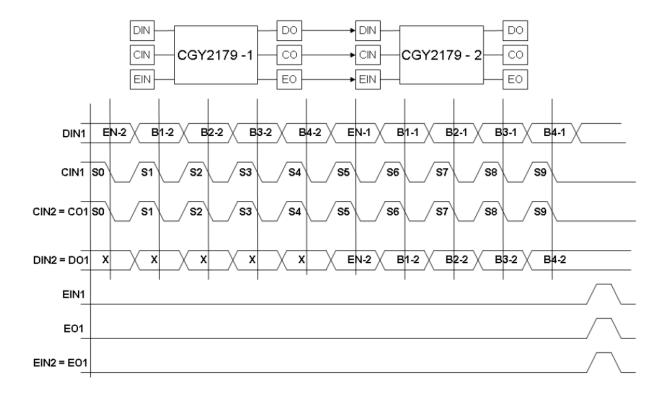
Bit #	Description	Theoretical Value
В0	Enable	_
B1	45° Phase Shifting Cell	45°
B2	90° Phase Shifting Cell	90°
В3	22.5° Phase Shifting Cell	22.5°
B4	180° Phase Shifting Cell	180°

Control Voltage (CMOS Standard Logic)

State	V Min.	V max.
Low	0 V	1 V
High	3 V	V_{DN}


Timing Diagram

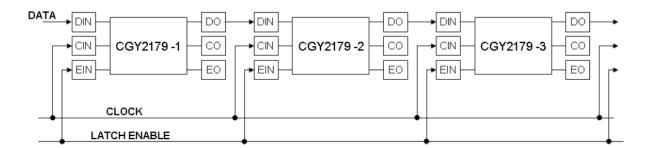
- DIN is sampled at the falling edge of CIN.
- Falling edge of EIN must occur when all the 5 bits are loaded and on high level of CIN.
- DIN is transferred and Phase Shifter positions changed on high level of EIN.


Internal Control Block Diagram

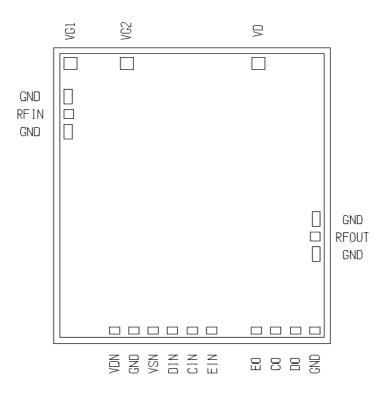
Cascaded CGY2179UH/C1 Control

2 or more CGY2179UH/C1 can be cascaded and controlled by a unique serial interface.

The enable/disable bit and associated internal hardware allow the user to chose the devices which are not subject to reprogramming in the device chain.

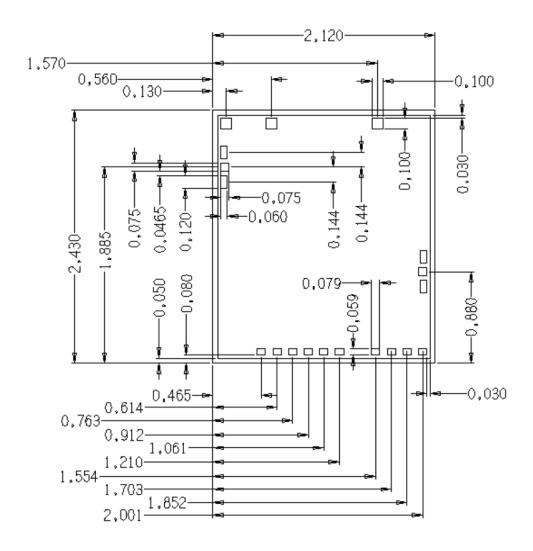


Daisy Chain Configuration


An alternate way of designing a multiple CGY2179UH/C1 system using a single serial interface is to use the daisy chain mechanism.

Output data pin DO of device number N is connected to Input data pin DIN of device number N+1, Clock and LATCH ENABLE pin are driven in parallel.

The enable/disable bit and associated internal hardware allow the user to chose the devices which are not subject to reprogramming in the device chain.


Pin Configuration⁵

Pin #	Symbol	Description	
1,5,6,20 - 23,25,26,28	GND	Ground	
2,4,8,16,17,19	RFIN	RF Input	
3	VDN	Positive Supply Voltage	
7	VSN	Negative Supply Voltage	
9	DIN	Data Input	
10	CIN	Clock Input	
11	EIN	Enable Input	
12	EO	Data Output	
13	СО	Clock Output	
14	DO	Enable Output	
15	RFOUT	RF Output	
18	VD	Drain Voltage	
24	VG1	Gate Voltage 1st Stage LNA	
27	VG2	Gate Voltage 2nd Stage LNA	

^{5.} The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Mechanical Information

Notes 1: RFIN and RFOUT pads are suitable to accommodate GSG 150 mm RF probes

- Central pad (Signal) is 75 x 75 mm
- Lateral pads (GND) are 120 x 60 mm
- Distance from central pad to ground pads are 46.5 mm
- Distance from pad to dicing streets are 30 mm

Notes 2 : Control pad

- North pads are 100 x 100 mm
- South pads are 79 x 49 mm
- Distance from pad to dicing streets are 30 mm

Notes 3: Dicing reduce the device by approximately 32 mm

4-Bit, Ku-Band Core Chip 10.70 - 12.75 GHz

CGY2179UH/C1 Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.