

CGHV96130F 130 W, 8.4 - 9.6 GHz, 50-ohm, Input/Output Matched GaN Amplifier

Description

The CGHV96130F is a gallium nitride (GaN) amplifier. This GaN amplifier offers excellent power added efficiency in comparison to other technologies. GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to GaAs transistors. This amplifier is available in a metal/ceramic flanged package for optimal electrical and thermal performance.

Package Type: 440217 PN: CGHV96130F

Typical Performance Over 8.4 - 9.6 GHz ($T_c = 25^{\circ}C$)

Parameter	8.4 GHz	8.6 GHz	8.8 GHz	9.0 GHz	9.2 GHz	9.4 GHz	9.6 GHz	Units
Linear Gain	13.6	13.1	13.3	13.5	13.8	13.0	11.8	dB
Output Power	184	173	173	168	163	165	153	W
Power Gain	8.7	8.4	8.4	8.3	8.0	8.2	7.8	dB
Power Added Efficiency	36	33	33	33	34	38	39	%

Note:

Measured in CGHV96130F-AMP (838179) under 100 μs pulse width, 10% duty, P_{IN} 44.0 dBm (25.1 W)

Features

- 8.4 9.6 GHz Operation
- 166 W Pout typical
- 7.5 dB Power Gain
- 42% Typical PAE
- 50 Ohm Internally Matched
- <0.3 dB Power Droop

Applications

- Marine Radar
- Weather Monitoring
- Air Traffic Control
- Maritime Vessel Traffic Control
- Port Security

 \sim

1

Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	120	.,	a=%c
Gate-Source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	222.0	W	Pulse
Storage Temperature	T _{STG}	-65, +150	0.5	
Operating Junction Temperature	TJ	225	°C	
DC Drain Current	I _{DMAX}	5.6	А	
Maximum Forward Gate Current	I _{GMAX}	28.8	mA	25°C
Soldering Temperature ¹	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	R _{θJC}	0.73	°C/W	Pulse Width = 100 μs, Duty Cycle = 10%, 85°C, P _{DISS} = 173 W
Case Operating Temperature ²	T _c	-40, +150	°C	
Pulse Width	PW	100	μsec	
Duty Cycle	DC	10	%	

Notes:

¹ Refer to the Application Note on soldering

² See also, the Power Dissipation De-rating Curve on Page 9

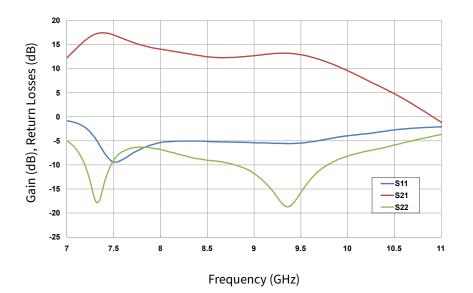
Electrical Characteristics (Frequency = 9.4 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

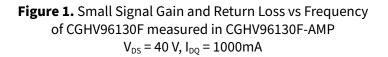
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	N	$V_{DS} = 10 \text{ V}, I_{D} = 28.8 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	_	V	$V_{DS} = 40 \text{ V}, I_{D} = 1000 \text{ mA}$
Saturated Drain Current ²	I _{DS}	21.0	26.0	_	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	100	_	_	V _{DC}	$V_{GS} = -8 V, I_D = 28.8 mA$
RF Characteristics ³						
Small Signal Gain	S21	10.5	12.2	_	_	$V_{DD} = 40$ V, $I_{DQ} = 1000$ mA, $P_{IN} = -20$ dBm
Input Return Loss at 8.4 - 9.4 GHz		_	-5.4	_		
Input Return Loss at 9.4 - 9.6 GHz	\$11		-5.6	_	dB	
Output Return Loss	S22	_	-8.8	_		
Power Output ^{3,4}	Pout	130	166	_	W	
Power Added Efficiency ^{3,4}	PAE	30	42	_	%	$V_{DD} = 40 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 44 \text{ dBm}$
Power Gain ^{3,4}	P _G	7.0	7.5	_	dB	
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 40 \text{ V}$, $I_{DQ} = 1000 \text{ mA}$

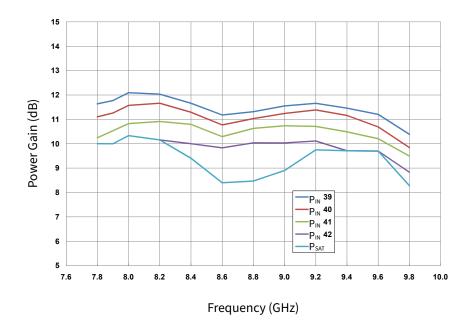
Notes:

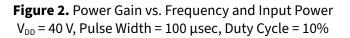
¹ Measured on wafer prior to packaging

² Scaled from PCM data

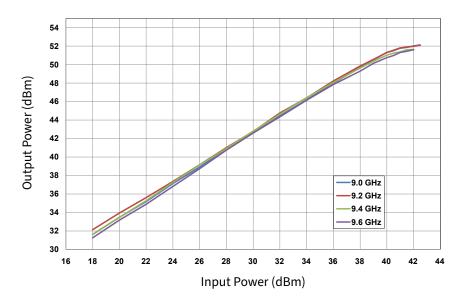
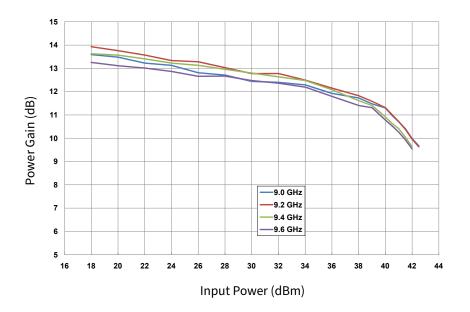

 $^{\rm 3}$ Measured in CGHV96100F2-TB (838179) under 100 μs pulse width, 10% duty

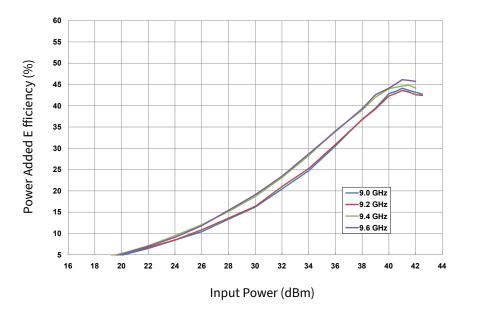

⁴ Fixture loss de-embedded using the following offsets: Frequency = 9.4 GHz. Input = 0.5 dB and Output = 0.5 dB


https://www.macom.com/support


² MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Figure 3. Output Power vs. Input Power V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%

4 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Figure 5. Power Added Efficiency vs. Input Power $V_{DD} = 40$ V, Pulse Width = 100 µsec, Duty Cycle = 10%

Figure 6. Output Power vs. Time $V_{DD} = 40 \text{ V}, P_{IN} = 41 \text{ dBm}, \text{Duty Cycle} = 10\%$

⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

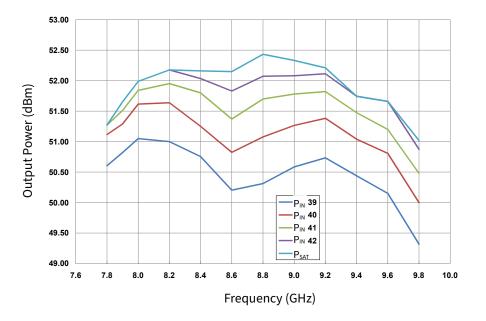
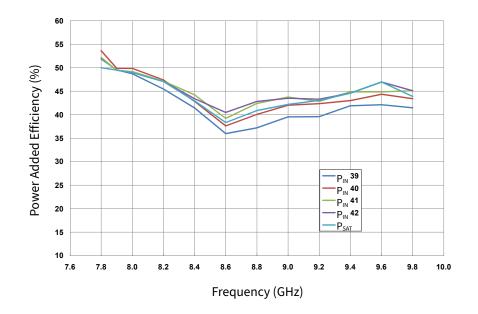
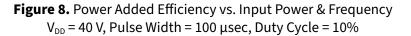
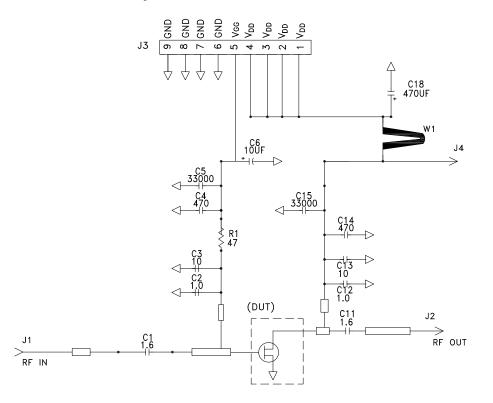




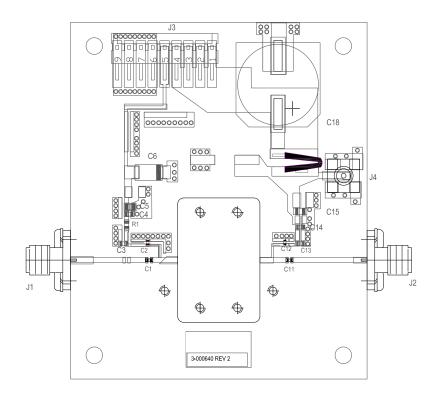
Figure 7. Output Power vs. Input Power & Frequency V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%

6 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

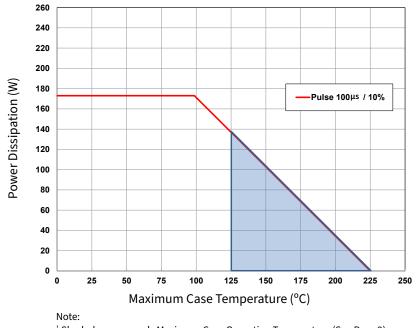
7


CGHV96130F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 47 OHM +/-1%, 1/16 W, 0603, SMD	1
C1, C11	CAP, 1.6pF, +/- 0.1pF, 200V, 0402, ATC 600L	2
C2, C12	CAP, 1.0pF, +/- 0.1pF, 200V, 0402 ATC 600L	2
C3, C13	CAP, 10pF +/-5%, 0603, ATC	2
C4, C14	CAP, 470pF +/-5%, 100 V, 0603	2
C5, C15	CAP, 33,000pF, 0805, 100 V, X7R	2
C6	CAP, 10µF, 16 V, TANTALUM	1
C18	CAP, 470μF +/-20%, ELECTROLYTIC	1
J1,J2	CONNECTOR, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT JACK	1
	PCB, TEST FIXTURE, TACONICS RF35P, 20 MIL THK, 440210 PKG	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV96130F	1


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

CGHV96130F-AMP Demonstration Amplifier Circuit Schematic


CGHV96130F-AMP Demonstration Amplifier Circuit Outline

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support



CGHV96130F Power Dissipation De-rating Curve

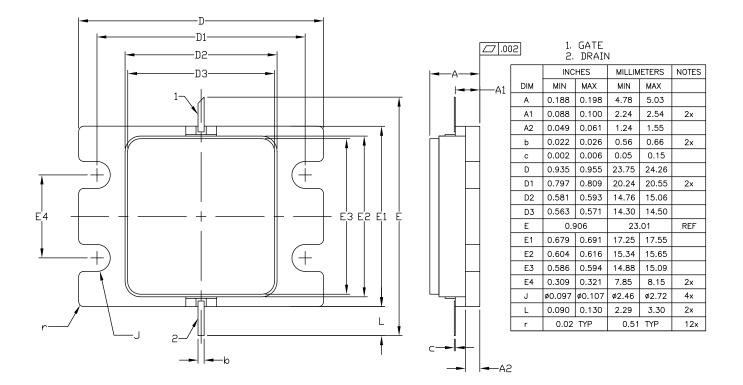
¹ Shaded area exceeds Maximum Case Operating Temperature (See Page 2)

CGHV96130F Transient Curve

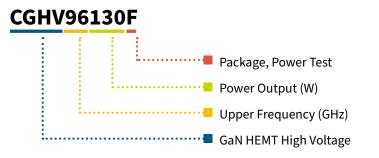
Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

⁹ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:


https://www.macom.com/support

10



Product Dimensions CGHV96130F (Package Type – 440217)

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	9.6	GHz
Power Output	130	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value		
А	0		
В	1		
С	2		
D	3		
E	4		
F	5		
G	6		
н	7		
J	8		
К	9		
Examples	1A = 10.0 GHz 2H = 27.0 GHz		

Table 2.

¹¹ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV96130F	GaN HEMT	Each	Confirmant of
CGHV96130F-AMP	Test board with GaN HEMT	Each	

12 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 3, July 2024

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support