

CGHV96050F1

50 W, 7.9 - 9.6 GHz, 50-ohm, Input/Output Matched GaN Amplifier

Description

The CGHV96050F1 is a gallium nitride (GaN) amplifier. This GaN Internally Matched (IM) FET offers excellent power added efficiency in comparison to other technologies. GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to GaAs transistors. This amplifier is available in a metal/ceramic flanged package for optimal electrical and thermal performance.

PN: CGHV96050F1 Package Type: 440217

Features

- 7.9 8.4 GHz Operation
- 80 W P_{OUT} typical
- >13 dB Power Gain
- 33% Typical PAE
- 50 Ohm Internally Matched
- <0.1 dB Power Droop

Applications

- Satellite Communications
- Terrestrial Broadband

Typical Performance Over 7.9 - 8.4 GHz ($T_c = 25^{\circ}C$)

Parameter	7.9 GHz	8.0 GHz	8.1 GHz	8.2 GHz	8.3 GHz	8.4 GHz	Units
Linear Gain	17.0	16.7	16.4	15.9	15.2	14.6	dB
Output Power	22.4	28.2	28.2	31.6	31.6	31.6	W
Power Gain	15.6	15.0	15.1	14.5	14.0	13.2	dB
Power Added Efficiency	30	37	37	39	38	37	%

¹ Measured at -30 dBc, 1.6 MHz from carrier, in the CGHV96050F1-AMP (838176) under OQPSK modulation, 1.6 Msps, PN23, Alpha Filter = 0.2

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions	
Drain-Source Voltage	V_{DSS}	120	V	2500	
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25°C	
Power Dissipation	P _{DISS}	57.6 / 86.4	W	(CW / Pulse)	
Storage Temperature	T _{STG}	-65, +150	0.6		
Operating Junction Temperature	TJ	225	°C		
DC Drain Current	I _{DMAX}	5.6	Α		
Maximum Forward Gate Current	I _{GMAX}	14.4	mA	25°C	
Soldering Temperature ¹	Ts	245	°C		
Screw Torque	τ	40	in-oz		
Thermal Resistance, Junction to Case	_	1.4	0.5 /1	Pulse Width = 100μs, Duty Cycle = 10%, P _{DISS} = 86.4 W	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.12	°C/W	CW, 85°C, P _{DISS} = 57.6 W	
Case Operating Temperature ²	Tc	-40, +150	°C		

Notes:

Electrical Characteristics (Frequency = 7.9 - 8.4 GHz unless otherwise stated; $T_c = 25^{\circ}$ C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	V _{GS(th)}	-3.8	2.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_D = 14.4 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-3.0	_	V	$V_{DS} = 40 \text{ V}, I_D = 500 \text{ mA}$	
Saturated Drain Current ²	I _{DS}	11.5	13.0	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V_{BR}	100	_	_	V	$V_{GS} = -8 \text{ V}, I_D = 14.4 \text{ mA}$	
RF Characteristics ³							
Small Signal Gain	S21	13.25	16	_			
Input Return Loss	S11	_	-4.9	-3.0		$V_{DD} = 40 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 20 \text{ dBm}$	
Output Return Loss	S22	_	-10.7	-5.5	dB	-	
Power Gain ^{3, 4} at 7.9 GHz		10.75	15.6	_]		
Power Gain ^{3, 4} at 8.4 GHz	G _P	10.75	13.5	_			
Power Added Efficiency ^{3, 4} at 7.9 GHz		10	25	_	0/		
Power Added Efficiency ^{3, 4} at 8.4 GHz	PAE	18	27	_	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{OUT} = 44 \text{ dBm}$	
OQPSK Linearity ^{3,4} at 7.9 GHz	4.61.5	_	_		l n		
OQPSK Linearity ^{3,4} at 8.4 GHz	ACLR		_	-26	dBc		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V _{DD} = 40 V, I _{DQ} = 500 mA	

Notes

¹ Refer to the Application Note on soldering

² See also, Power Dissipation Derating Curve on page 10

 $^{^{\}mathrm{1}}$ Measured on wafer prior to packaging

² Scaled from PCM data

³ Measured at -30 dBc, 1.6 MHz from carrier, in the CGHV96050F1-AMP (838176) under OQPSK modulation, 1.6 Msps, PN23, Alpha Filter = 0.2

⁴ Fixture loss de-embedded using the following offsets: At 7.9 GHz, input and output = 0.45 dB. At 8.4 GHz, input = 0.50 dB and output = 0.55 dB.

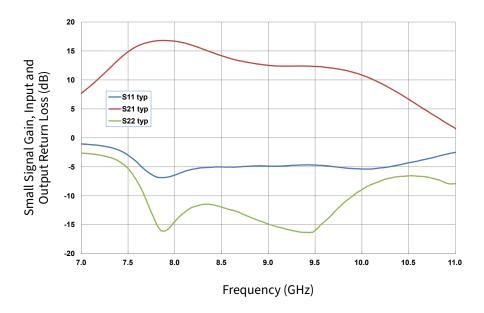


Figure 1. Small Signal Gain and Return Loss vs Frequency of CGHV96050F1 measured in CGHV96050F1-AMP V_{DS} = 40 V, I_{DQ} 500 mA

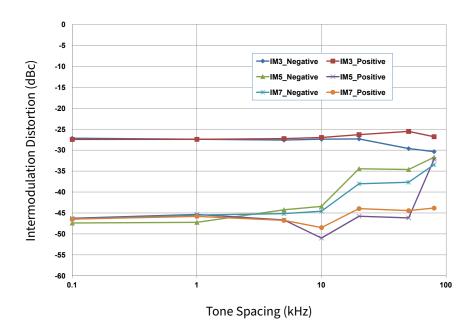


Figure 2. Intermodulation Distortion Performance vs Tone Spacing V_{DD} = 40 V, f = 8.2 GHz, Output Power = 44 dBm / 20 W

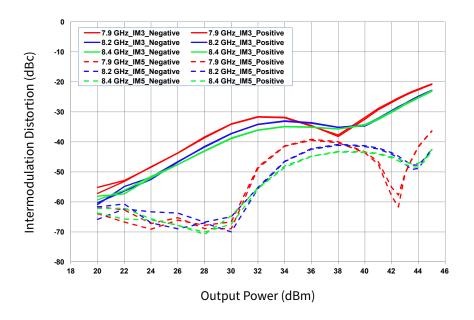
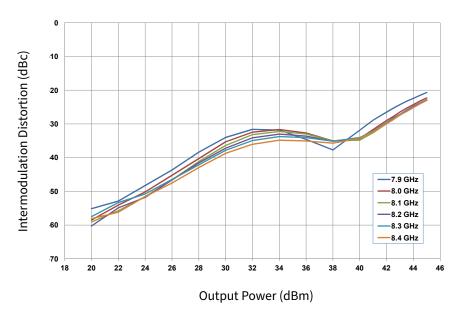



Figure 3. IM3 and IM5 vs Output Power at 7.9 GHz, 8.2 GHz, and 8.4 GHz $V_{DD} = 40 \text{ V}$, Tone Spacing = 100 kHz

Figure 4. Two Tone IMS vs Output Power $V_{DD} = 40 \text{ V}$, Tone Spacing = 100 kHz

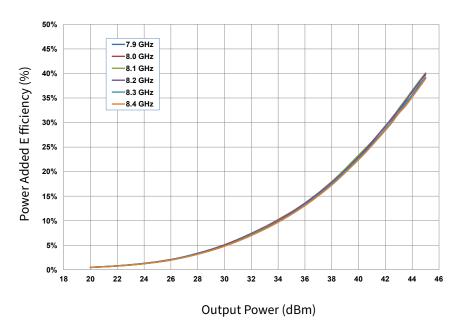
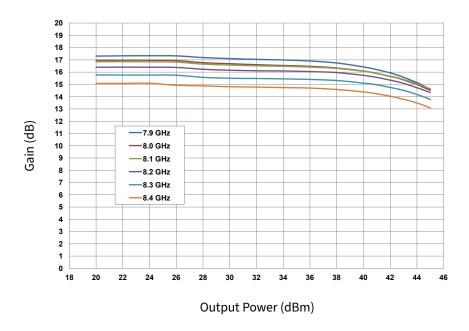
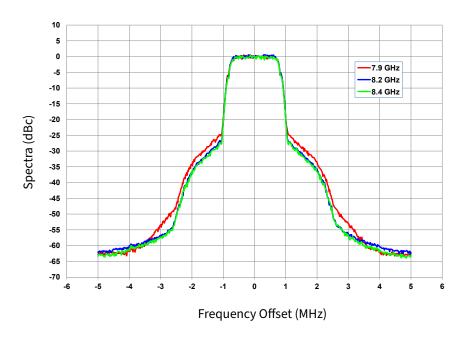




Figure 5. Two Tone Power Added Efficiency vs Output Power V_{DD} = 40 V, Tone Spacing = 100 kHz

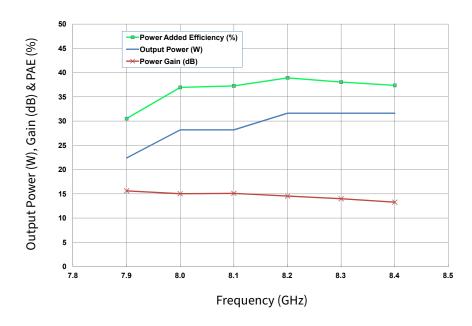


Figure 6. Two Tone Gain vs Output Power $V_{DD} = 40 \text{ V}$, Tone Spacing = 100 kHz

Figure 7. Spectral Mask under OQPSK Modulation, 1.6 Msps $V_{DD} = 40 \text{ V}$, Output Power = 44 dBm / 25 W

Figure 8. Linear Output Power, Gain and Power Added Efficiency vs Frequency V_{DD} = 40 V, I_{DQ} = 500 mA, 1.6 Msps, OQPSK Modulation at -30 dBc

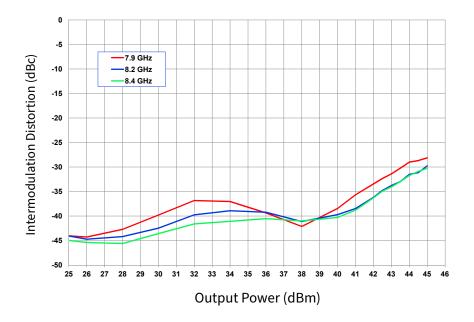
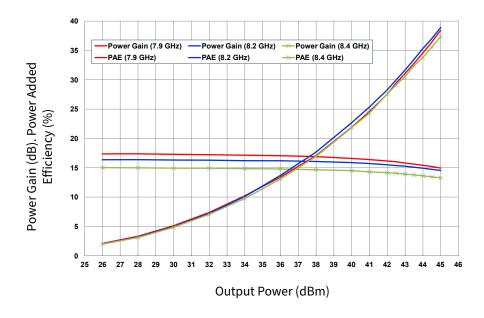
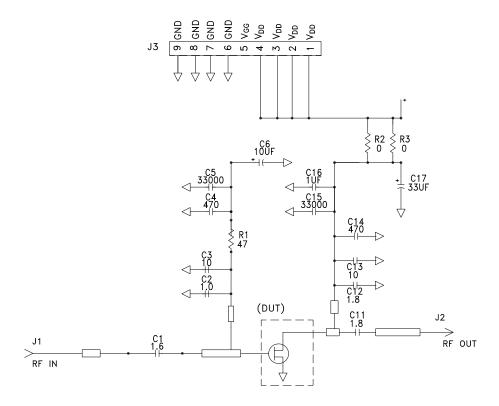



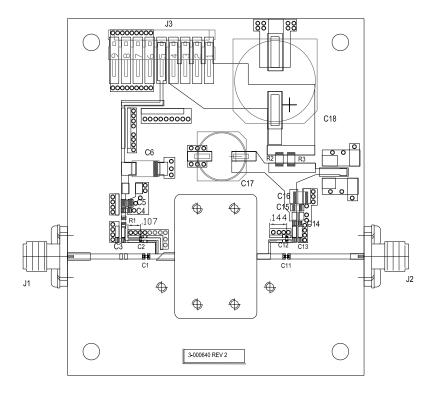
Figure 9. OQPSK Linearity vs Output Power $V_{DD} = 40 \text{ V}, f = 1.6 \text{ MHz}$

Figure 10. Power Gain and Power Added Efficiency vs Output Power $V_{DD} = 40 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, 1.6 Msps, OQPSK Modulation at -30 dBc

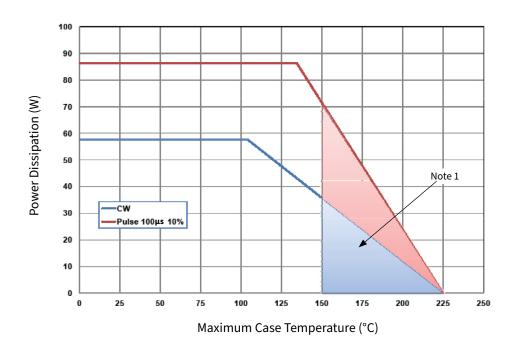
CGHV96050F1-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 47 OHM, +/-1%, 1/16 W, 0603, SMD	1
R2, R3	RES, 0 OHM +/-5%, 125 mW, 1206, SMD	2
C1	CAP, 1.6pF, +/- 0.1pF, 200V, 0402, ATC 600L	1
C2	CAP, 1.0pF, +/- 0.1pF, 200V, 0402, ATC 600L	1
C3, C13	CAP, 10pF +/-5%, 0603, ATC	2
C4, C14	CAP, 470pF +/-5%, 100 V, 0603	2
C5, C15	CAP, 33000pF, 0805, 100 V, X7R	2
C11, C12	CAP, 1.8pF, +/- 0.1 pF, 200V, 0402, ATC 600L	2
C16	CAP, 1µF +/-10%, 100 V, X7P, 1210	1
C17	CAP, 33μF +/-20%, G-CASE	1
C18	CAP, 470μF, +/-20%, ELECTROLYTIC	1
J1, J2	CONNECTOR, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
-	PCB, TEST FIXTURE, TACONICS RF35P, 20 MIL THK, 440210 PKG	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV96050F1	1

CGHV96050F1-AMP Demonstration Amplifier Circuit



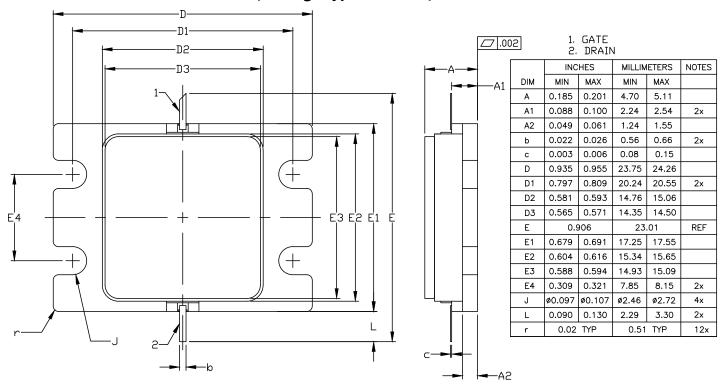
CGHV96050F1-AMP Demonstration Amplifier Circuit Schematic



CGHV96050F1-AMP Demonstration Amplifier Circuit Outline

CGHV96050F1 Power Dissipation De-rating Curve

Notes:


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

 $^{^{\}rm 1}\,{\rm Area}$ exceeds Maximum Case Temperature (See Page 2)

Product Dimensions CGHV96050F1 (Package Type — 440217)

Part Number System

CGHV96050F1

Table 1.

Parameter	Value	Units	
Upper Frequency ¹	9.6	GHz	
Power Output	50	W	
Package	Flange	_	

Table 2.

Character Code	Code Value	
А	0	
В	1	
С	2	
D	3	
E	4	
F	5	
G	6	
Н	7	
J	8	
К	9	
Examples:	1A = 10.0 GHz 2H = 27.0 GHz	

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV96050F1	GaN HEMT	Each	CHO
CGHV96050F1-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.