

CGHV59350F/P

Rev. V1

Features

5.2 – 5.9 GHz Operation

• 350 W Minimum Output Power

Large Signal Gain: 10.5 dB

• Drain Efficiency: 55 %

Internally Matched: 50 Ω

High Temperature Operation

RoHS* Compliant

Applications

C-Band RADAR

Description

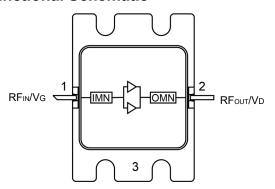
The CGHV59350 is a gallium nitride (GaN) amplifier designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV59350 ideal for 5.2 - 5.9 GHz C-Band radar amplifier applications. The amplifier is supplied in a ceramic/metal flange or pill package.

Typical RF Performance:

Measured in Evaluation Test Fixture¹ at $P_{IN} = 46$ dBm, 100 µsec pulse width and 10% Duty Cycle.

•
$$V_{DS} = 50 \text{ V}, I_{DQ} = 1 \text{ A}, T_{C} = 25^{\circ}\text{C}$$

Frequency (GHz)	Output ¹ Power (W)	Power ¹ Gain (dB)	η _D ¹ (%)
5.2	440	10.5	59
5.4	415	10.2	55
5.8	475	10.8	53
5.9	490	11.0	55


1. Performance values and curves in this data sheet were measured in this fixture.

440217

440218

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function		
1	RF _{IN} / V _G	RF Input / Gate		
2	RF _{OUT} / V _D	RF Output / Drain		
3	Flange ²	Ground / Source		

^{2.} The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	MOQ Increment			
CGHV59350F	Bulk			
CGHV59350P	Bulk			
CGHV59350F-AMP2	Sample Board			

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

CGHV59350F/P Rev. V1

RF Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 1 \text{ A}$

Parameter	Units	Min.	Тур.	Max.	Conditions		
Output Power at f = 5.2 GHz	W	389	440	_			
Output Power at f = 5.4 GHz	W	335	415	_			
Output Power at f = 5.8 GHz	W	302	475	_			
Output Power at f = 5.9 GHz	W	302	490	_			
Gain at f = 5.2 GHz	dB	_	10.5	_			
Gain at f = 5.4 GHz	dB	_	10.2	_	V _{dd} = 50 V, I _{dq} = 1 A, P _{in} = 46 dBm Pulse Width = 100 μs, Duty Cycle = 10%		
Gain at f = 5.8 GHz	dB	_	10.8	_	Pulse Width = 100 μs, Duty Cycle = 10%		
Gain at f = 5.9 GHz	dB	_	11.0	_			
Drain Efficiency at f = 5.2 GHz	%	53	59	_			
Drain Efficiency at f = 5.4 GHz	%	46	55	_			
Drain Efficiency at f = 5.8 GHz	%	40	53	_			
Drain Efficiency at f = 5.9 GHz	%	40	55	_			
Small Signal Gain	dB	11.5	15	_			
Input Return Loss	dB	_	-7	-3	V _{dd} = 50 V, I _{dq} = 1 A, P _{in} = 10 dBm		
Output Return Loss	dB	_	-11	-3			
Ruggedness: Output Mismatch	Ψ	_	_	5:1	No damage at all phase angles, V_{dd} = 50 V, I_{dq} = 1 A, P_{in} = 46 dBm Pulse width = 100 μ s, Duty Cycle = 10%		

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 150 \text{ V}$	I _{DLK}	-	-	25.6	mA
Gate-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 10 \text{ V}$	I _{GLK}	-8.9	-	-	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_{D} = 64 \text{ mA}$	V _T	-3.8	-3.0	-2.3	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 1 A	V_{GSQ}	-	-2.7	-	V

CGHV59350F/P

Rev. V1

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum		
Pulse Width	500 μs		
Duty Cycle	10 %		
Drain-Source Voltage	150 V		
Gate Voltage	-10, +2 V		
DC Drain Current	9 A		
Gate Current	64 mA		
Storage Temperature	-65°C to +150°C		
Mounting Temperature ³	+245°C		
Junction Temperature ^{4,5}	+225°C		
Operating Temperature	-40°C to +125°C		

- 1. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 3. Mounting temperature for 30 seconds.
- 4. Operating at nominal conditions with $T_J \le +225$ C will ensure MTTF > 1 x 10^6 hours.
- 5. Junction Temperature (T_J) = T_C + Θ jc * (V * I)

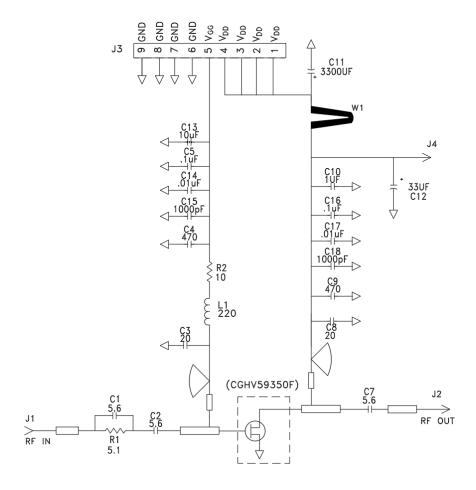
 Typical thermal resistance (Θ jc) = 0.31 °C/W for CW.

 a) For T_C = +85°C, T_J = 184 °C @ P_{diss} =320 W

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

CGHV59350F/P

Rev. V1

Evaluation Test Fixture and Recommended Tuning Solution, 5.2—5.9 GHz

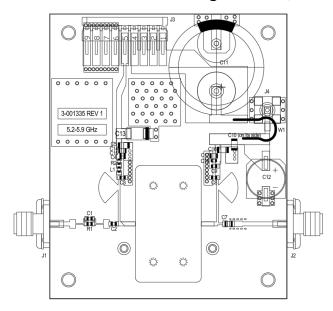
Description

Parts measured on evaluation board (20-mil thick RF35P). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Biasing Sequence

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF


Bias OFF

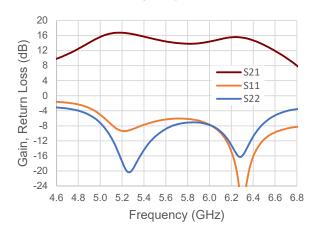
- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

CGHV59350F/P Rev. V1

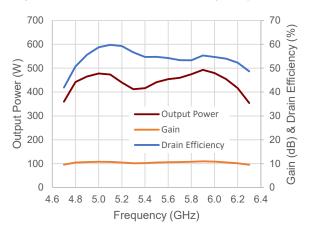
Evaluation Test Fixture and Recommended Tuning Solution, 5.2-5.9 GHz

Assembly Parts List

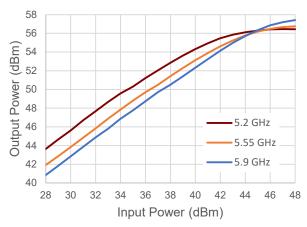
Reference Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 5.1 Ohms	1
R2	RES, 1/16W, 0603, 1%, 10.0 Ohms	1
C1, C2	CAP, 5.6pF +/- 0.1pF, 0603	2
C3, C8	CAP, 20.0pF, +/-5%, 0603	2
C4, C9	CAP, 470PF, 5%, 100V, 0603, X7R	2
C5, C16	CAP, 0.1uF, +/-10%, 250V, 1206, X7R	2
L1	IND, FERRITE, 220 OHM, 0603	1
C10	CAP, 1.0µF, 100V, 10%, X7R, 1210	1
C 7	CAP, 5.6 PF +/- 0.1 pF, 0805, ATC 600F	1
C11	CAP, 3300µF, +/-20%, 100V, ELECTROLYTIC	1
C12	CAP, 33µF, 20%, G CASE	1
C13	CAP TANT 10UF 10% 16V 2312	1
C14, C17	CAP, 0.01 uF, +/-10%, 250V, 0805, X7R DIELECTRIC	2
C15, C18	CAP, 1000pF, +/-5%, 0603	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK,SMD	1
W1	CABLE, 18 AWG, 4.2"	1
-	PCB, TEST FIXTURE, TACONIC RF35P, 20 MIL	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV59350F/P	1

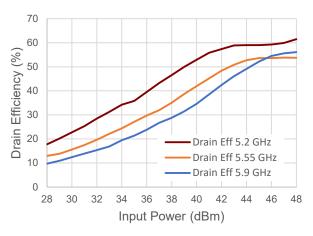


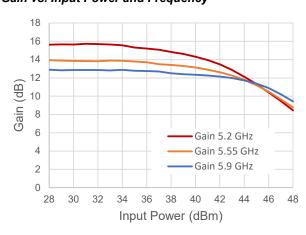
CGHV59350F/P

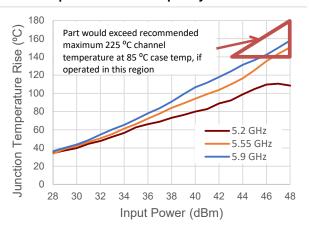

Rev. V1

Typical Performance Curves as Measured in the 5.2 – 5.9 GHz Evaluation Test Fixture Pulse width = 100 μ s, Duty Cycle = 10%, P_{IN} = 46 dBm, V_{DS} = 50 V, I_{DQ} = 1 A (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


\$11, \$21, & \$22 vs. Frequency

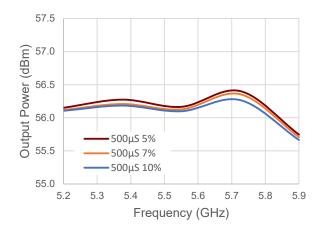

Output Power, Gain and PAE vs. Frequency


Output Power vs. Input Power and Frequency

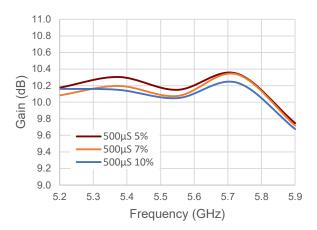

Drain Efficiency vs. Input Power and Frequency

Gain vs. Input Power and Frequency

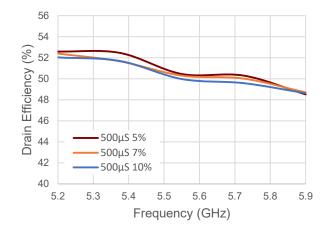
Gain vs. Input Power and Frequency



CGHV59350F/P

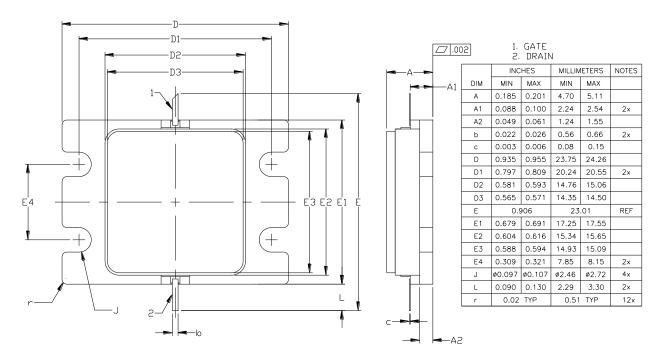

Rev. V1

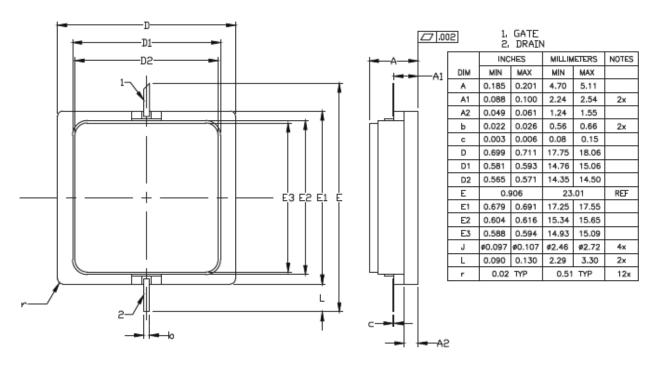
Typical Performance Curves as Measured in the 5.2 – 5.9 GHz Evaluation Test Fixture Pulse width = 500 μ s, Duty Cycle = 10%, P_{IN} = 46 dBm, V_{DS} = 50 V, I_{DQ} = 1 A (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


Output Power vs. Frequency

Gain vs. Frequency

Drain Efficiency vs. Frequency




CGHV59350F/P

Rev. V1

Lead-free 440217 Package Dimensions

Lead-free 440218 Package Dimensions

GaN Amplifier 50 V, 350 W 5.2 - 5.9 GHz

MACOM PURE CARBIDE...

CGHV59350F/P

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.